Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 87 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 87 - in Differential Geometrical Theory of Statistics

Image of the Page - 87 -

Image of the Page - 87 - in Differential Geometrical Theory of Statistics

Text of the Page - 87 -

Entropy2016,18, 386 TheFisher informationdefinesametricgiventoNn aRiemannianmanifoldstructure. The inner productof twotangentvectors (η1,Ω1)∈Tn, (η2,Ω2)∈Tn at thepoint (μ,Σ)∈Nn isgivenby: g(μ,Σ)) ((η1,Ω1) ,(η1,Ω1))=η T 1Σ −1η2+ 1 2 Tr ( Σ−1Ω1Σ−1Ω2 ) (180) NielsChristianBangJespersonhasprovedthat the transformationmodelonRnwithparameter set Rn×Sym+n are exactly those of the form pμ,Σ = fμ,Σλ where λ is the Lebesque measure, where fμ,Σ(x)= h ( (x−μ)TΣ−1(x−μ) ) /det(Σ)1/2 and h : [0,+∞[→R+ isacontinuousfunction with +∞ 0 h(s)s n 2−1ds<+∞. Distributionswithdensitiesof this formarecalledellipticdistributions. To improve understanding of tools, wewill considerGA(n) as a sub-group of affine group, thatcouldbedefinedbyamatrixLiegroupGaf f , thatacts formultivariateGaussianlaws,as illustrated inFigure11: [ Y 1 ] = [ R1/2 m 0 1 ][ X 1 ] = [ R1/2X+m 1 ] , ⎧⎪⎪⎨⎪⎪⎩ (m,R)∈Rn×Sym+(n) M= [ R1/2 m 0 1 ] ∈Gaf f X≈ℵ(0, I)→Y≈ℵ(m,R) (181) Wecanverify thatM is aLiegroupwith classicalproperties, thatproductofMpreserves the structure, theassociativity, thenon-commutativity,andtheexistenceofneutralelement: M1 ·M2= [ R1/21 m1 0 1 ][ R1/22 m2 0 1 ] = [ R1/21 R 1/2 2 R 1/2 1 m2+m1 0 1 ] M2 ·M1= [ R1/22 m2 0 1 ][ R1/21 m1 0 1 ] = [ R1/22 R 1/2 1 R 1/2 2 m1+m2 0 1 ] ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ ⇒ ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ M1 ·M2∈Gaf f M2 ·M1∈Gaf f M1 ·M2 =M2 ·M1 M1 ·(M2 ·M3)= (M1 ·M2) ·M3 M1 · I=M1 (182) Wecanalsoobserve that the inversepreserves thestructure: M= [ R1/2 m 0 1 ] ⇒M−1R =M−1L =M−1= [ R−1/2 −R−1/2m 0 1 ] ∈Gaf f (183) To thisLiegroupwecanassociateaLiealgebrawhoseunderlyingvector space is the tangent spaceof theLiegroupat the identityelementandwhichcompletelycaptures the local structureof thegroup. ThisLiegroupactssmoothlyonthemanifold,andactsonthevectorfields.Anytangent vectorat the identityofaLiegroupcanbeextendedtoa left (respectivelyright) invariantvectorfield by left (respectivelyright) translating the tangentvector tootherpointsof themanifold. This identifies the tangentspaceat the identityg=TI(G)withthespaceof left invariantvectorfields,andtherefore makes the tangentspaceat the identity intoaLiealgebra, calledtheLiealgebraofG. LG : { Gaf f →Gaf f M →LMN=M ·N andRG : { Gaf f →Gaf f M →RMN=N ·M (184) 87
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics