Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 87 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 87 - in Differential Geometrical Theory of Statistics

Bild der Seite - 87 -

Bild der Seite - 87 - in Differential Geometrical Theory of Statistics

Text der Seite - 87 -

Entropy2016,18, 386 TheFisher informationdefinesametricgiventoNn aRiemannianmanifoldstructure. The inner productof twotangentvectors (η1,Ω1)∈Tn, (η2,Ω2)∈Tn at thepoint (μ,Σ)∈Nn isgivenby: g(μ,Σ)) ((η1,Ω1) ,(η1,Ω1))=η T 1Σ −1η2+ 1 2 Tr ( Σ−1Ω1Σ−1Ω2 ) (180) NielsChristianBangJespersonhasprovedthat the transformationmodelonRnwithparameter set Rn×Sym+n are exactly those of the form pμ,Σ = fμ,Σλ where λ is the Lebesque measure, where fμ,Σ(x)= h ( (x−μ)TΣ−1(x−μ) ) /det(Σ)1/2 and h : [0,+∞[→R+ isacontinuousfunction with +∞ 0 h(s)s n 2−1ds<+∞. Distributionswithdensitiesof this formarecalledellipticdistributions. To improve understanding of tools, wewill considerGA(n) as a sub-group of affine group, thatcouldbedefinedbyamatrixLiegroupGaf f , thatacts formultivariateGaussianlaws,as illustrated inFigure11: [ Y 1 ] = [ R1/2 m 0 1 ][ X 1 ] = [ R1/2X+m 1 ] , ⎧⎪⎪⎨⎪⎪⎩ (m,R)∈Rn×Sym+(n) M= [ R1/2 m 0 1 ] ∈Gaf f X≈ℵ(0, I)→Y≈ℵ(m,R) (181) Wecanverify thatM is aLiegroupwith classicalproperties, thatproductofMpreserves the structure, theassociativity, thenon-commutativity,andtheexistenceofneutralelement: M1 ·M2= [ R1/21 m1 0 1 ][ R1/22 m2 0 1 ] = [ R1/21 R 1/2 2 R 1/2 1 m2+m1 0 1 ] M2 ·M1= [ R1/22 m2 0 1 ][ R1/21 m1 0 1 ] = [ R1/22 R 1/2 1 R 1/2 2 m1+m2 0 1 ] ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ ⇒ ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ M1 ·M2∈Gaf f M2 ·M1∈Gaf f M1 ·M2 =M2 ·M1 M1 ·(M2 ·M3)= (M1 ·M2) ·M3 M1 · I=M1 (182) Wecanalsoobserve that the inversepreserves thestructure: M= [ R1/2 m 0 1 ] ⇒M−1R =M−1L =M−1= [ R−1/2 −R−1/2m 0 1 ] ∈Gaf f (183) To thisLiegroupwecanassociateaLiealgebrawhoseunderlyingvector space is the tangent spaceof theLiegroupat the identityelementandwhichcompletelycaptures the local structureof thegroup. ThisLiegroupactssmoothlyonthemanifold,andactsonthevectorfields.Anytangent vectorat the identityofaLiegroupcanbeextendedtoa left (respectivelyright) invariantvectorfield by left (respectivelyright) translating the tangentvector tootherpointsof themanifold. This identifies the tangentspaceat the identityg=TI(G)withthespaceof left invariantvectorfields,andtherefore makes the tangentspaceat the identity intoaLiealgebra, calledtheLiealgebraofG. LG : { Gaf f →Gaf f M →LMN=M ·N andRG : { Gaf f →Gaf f M →RMN=N ·M (184) 87
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics