Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 93 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 93 - in Differential Geometrical Theory of Statistics

Image of the Page - 93 -

Image of the Page - 93 - in Differential Geometrical Theory of Statistics

Text of the Page - 93 -

Entropy2016,18, 386 HeniPoincaréprovedthatwhenaLiealgebraacts locallyandtransitivelyontheconfiguration spaceofaLagrangianmechanicalsystem,theEuler-Lagrangeequationsareequivalenttoanewsystem ofdifferentialequationsdefinedontheproductof theconfigurationspacewith theLiealgebra. Ifweconsider that the followingfunction is stationary foraLagragian l(.) invariantwithrespect to theactionofagrouponthe left: S(ηL)= b a l(ηL)dtwithδS(ηL)=0and l : g→R (219) Thesolution isgivenbytheEuler-Poincaréequation: d dt δl δηL = ad∗ηL δl δηL δηL= . Γ+adηLΓwhereΓ(t)∈ g (220) Ifwetakeforthefunction l(.), thetotalkineticenergyEL,usingΠL=M−1 . M= ∂EL∂nL ∈ gL, thenthe Euler-Poincaréequation isgivenby: dΠL dt = ad∗nLΠLwith δl δηL = ∂EL ∂nL =ΠL∈ gL (221) Thefollowingquantitiesareconserved: dΠR dt =0 (222) With thissecondtheorem, it ispossible towrite thegeodesicnot fromitscoordinatesystembut fromthequantityofmotion,and inaddition todetermineexplicitlywhat theconservedquantities along the geodesic are (conservations are related to the symmetries of the variety andhence the invarianceof theLagrangianunder theactionof thegroup). Forouruse-case, theEuler-Poincaréequation isgivenby: { . ηL1=−ηL2ηTL2 . ηL2=ηL2ηL1 with ⎧⎨⎩ ηL1=R−1/2 . R 1/2 ηL2=R−1/2 . m ⇒ ⎧⎪⎪⎨⎪⎪⎩ ( R−1/2 . R 1/2 )• =−R−1/2 .m .mTR−1/2( R−1/2 .m )• = . R −1/2 . R 1/2 R−1/2 .m (223) IfweremarkthatwehaveR−1/2 . R 1/2 =R−1/2 ( R−1/2 . R ) =R−1 . R, thentheconservedSouriau momentcouldbegivenby: ΠR= [ R−1/2 . R 1/2 +R−1 .mmT R−1 .m 0 0 ] = [ R−1 . R+R−1 .mmT R−1 .m 0 0 ] (224) Componentsof theSouriaumomentgive theconservedquantities thatare theclassicalelements givenbyEmmyNoetherTheorem(Souriaumoment isageometrizationofEmmyNoetherTheorem): dΠR dt = ⎡⎢⎣ d ( R−1 . R+R−1 .mmT ) dt d(R−1 . m) dt 0 0 ⎤⎥⎦=0⇒ ⎧⎨⎩ R −1 .R+R−1 .mmT=B= cste R−1 .m= b= cste (225) Fromthisconstant,wecanobtainareducedequationofgeodesic:⎧⎨⎩ . m=Rb . R=R ( B−bmT) (226) 93
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics