Page - 93 - in Differential Geometrical Theory of Statistics
Image of the Page - 93 -
Text of the Page - 93 -
Entropy2016,18, 386
HeniPoincarĂŠprovedthatwhenaLiealgebraacts locallyandtransitivelyontheconďŹguration
spaceofaLagrangianmechanicalsystem,theEuler-Lagrangeequationsareequivalenttoanewsystem
ofdifferentialequationsdeďŹnedontheproductof theconďŹgurationspacewith theLiealgebra.
Ifweconsider that the followingfunction is stationary foraLagragian l(.) invariantwithrespect
to theactionofagrouponthe left:
S(ΡL)= b
a l(ΡL)dtwithδS(ΡL)=0and l : gâR (219)
Thesolution isgivenbytheEuler-PoincarĂŠequation:
d
dt δl
δΡL = adâΡL δl
δΡL
δΡL= .
Î+adΡLÎwhereÎ(t)â g (220)
Ifwetakeforthefunction l(.), thetotalkineticenergyEL,usingÎ L=Mâ1 .
M= âELânL â gL, thenthe
Euler-PoincarĂŠequation isgivenby:
dÎ L
dt = adânLÎ Lwith δl
δΡL = âEL
ânL =Î Lâ gL (221)
Thefollowingquantitiesareconserved:
dÎ R
dt =0 (222)
With thissecondtheorem, it ispossible towrite thegeodesicnot fromitscoordinatesystembut
fromthequantityofmotion,and inaddition todetermineexplicitlywhat theconservedquantities
along the geodesic are (conservations are related to the symmetries of the variety andhence the
invarianceof theLagrangianunder theactionof thegroup).
Forouruse-case, theEuler-PoincarĂŠequation isgivenby:
{ .
ΡL1=âΡL2ΡTL2
.
ΡL2=ΡL2ΡL1 with â§â¨âŠ ÎˇL1=Râ1/2 .
R 1/2
ΡL2=Râ1/2 .
m â â§âŞâŞâ¨âŞâŞâŠ (
Râ1/2 .
R 1/2 )â˘
=âRâ1/2 .m
.mTRâ1/2(
Râ1/2 .m )â˘
= .
R â1/2 .
R 1/2 Râ1/2 .m (223)
IfweremarkthatwehaveRâ1/2 .
R 1/2 =Râ1/2 (
Râ1/2 .
R )
=Râ1 .
R, thentheconservedSouriau
momentcouldbegivenby:
Î R= [
Râ1/2 .
R 1/2 +Râ1 .mmT Râ1 .m
0 0 ]
= [
Râ1 .
R+Râ1 .mmT Râ1 .m
0 0 ]
(224)
Componentsof theSouriaumomentgive theconservedquantities thatare theclassicalelements
givenbyEmmyNoetherTheorem(Souriaumoment isageometrizationofEmmyNoetherTheorem):
dÎ R
dt = âĄâ˘âŁ d (
Râ1 .
R+Râ1 .mmT )
dt d(Râ1 .
m)
dt
0 0 â¤âĽâŚ=0â â§â¨âŠ R â1 .R+Râ1 .mmT=B= cste
Râ1 .m= b= cste (225)
Fromthisconstant,wecanobtainareducedequationofgeodesic:â§â¨âŠ
.
m=Rb
.
R=R ( BâbmT) (226)
93
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik