Seite - 93 - in Differential Geometrical Theory of Statistics
Bild der Seite - 93 -
Text der Seite - 93 -
Entropy2016,18, 386
HeniPoincarĂ©provedthatwhenaLiealgebraacts locallyandtransitivelyontheconïŹguration
spaceofaLagrangianmechanicalsystem,theEuler-Lagrangeequationsareequivalenttoanewsystem
ofdifferentialequationsdeïŹnedontheproductof theconïŹgurationspacewith theLiealgebra.
Ifweconsider that the followingfunction is stationary foraLagragian l(.) invariantwithrespect
to theactionofagrouponthe left:
S(ηL)= b
a l(ηL)dtwithÎŽS(ηL)=0and l : gâR (219)
Thesolution isgivenbytheEuler-Poincaréequation:
d
dt ÎŽl
ΎηL = adâηL ÎŽl
ΎηL
ΎηL= .
Î+adηLÎwhereÎ(t)â g (220)
Ifwetakeforthefunction l(.), thetotalkineticenergyEL,usingÎ L=Mâ1 .
M= âELânL â gL, thenthe
Euler-Poincaréequation isgivenby:
dÎ L
dt = adânLÎ Lwith ÎŽl
ΎηL = âEL
ânL =Î Lâ gL (221)
Thefollowingquantitiesareconserved:
dÎ R
dt =0 (222)
With thissecondtheorem, it ispossible towrite thegeodesicnot fromitscoordinatesystembut
fromthequantityofmotion,and inaddition todetermineexplicitlywhat theconservedquantities
along the geodesic are (conservations are related to the symmetries of the variety andhence the
invarianceof theLagrangianunder theactionof thegroup).
Forouruse-case, theEuler-Poincaréequation isgivenby:
{ .
ηL1=âηL2ηTL2
.
ηL2=ηL2ηL1 with â§âšâ© ηL1=Râ1/2 .
R 1/2
ηL2=Râ1/2 .
m â â§âȘâȘâšâȘâȘâ© (
Râ1/2 .
R 1/2 )âą
=âRâ1/2 .m
.mTRâ1/2(
Râ1/2 .m )âą
= .
R â1/2 .
R 1/2 Râ1/2 .m (223)
IfweremarkthatwehaveRâ1/2 .
R 1/2 =Râ1/2 (
Râ1/2 .
R )
=Râ1 .
R, thentheconservedSouriau
momentcouldbegivenby:
Î R= [
Râ1/2 .
R 1/2 +Râ1 .mmT Râ1 .m
0 0 ]
= [
Râ1 .
R+Râ1 .mmT Râ1 .m
0 0 ]
(224)
Componentsof theSouriaumomentgive theconservedquantities thatare theclassicalelements
givenbyEmmyNoetherTheorem(Souriaumoment isageometrizationofEmmyNoetherTheorem):
dÎ R
dt = âĄâąâŁ d (
Râ1 .
R+Râ1 .mmT )
dt d(Râ1 .
m)
dt
0 0 â€â„âŠ=0â â§âšâ© R â1 .R+Râ1 .mmT=B= cste
Râ1 .m= b= cste (225)
Fromthisconstant,wecanobtainareducedequationofgeodesic:â§âšâ©
.
m=Rb
.
R=R ( BâbmT) (226)
93
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik