Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 93 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 93 - in Differential Geometrical Theory of Statistics

Bild der Seite - 93 -

Bild der Seite - 93 - in Differential Geometrical Theory of Statistics

Text der Seite - 93 -

Entropy2016,18, 386 HeniPoincarĂ©provedthatwhenaLiealgebraacts locallyandtransitivelyontheconïŹguration spaceofaLagrangianmechanicalsystem,theEuler-Lagrangeequationsareequivalenttoanewsystem ofdifferentialequationsdeïŹnedontheproductof theconïŹgurationspacewith theLiealgebra. Ifweconsider that the followingfunction is stationary foraLagragian l(.) invariantwithrespect to theactionofagrouponthe left: S(ηL)= b a l(ηL)dtwithÎŽS(ηL)=0and l : g→R (219) Thesolution isgivenbytheEuler-PoincarĂ©equation: d dt ÎŽl ΎηL = ad∗ηL ÎŽl ΎηL ΎηL= . Γ+adηLΓwhereΓ(t)∈ g (220) Ifwetakeforthefunction l(.), thetotalkineticenergyEL,usingΠL=M−1 . M= ∂EL∂nL ∈ gL, thenthe Euler-PoincarĂ©equation isgivenby: dΠL dt = ad∗nLΠLwith ÎŽl ΎηL = ∂EL ∂nL =ΠL∈ gL (221) Thefollowingquantitiesareconserved: dΠR dt =0 (222) With thissecondtheorem, it ispossible towrite thegeodesicnot fromitscoordinatesystembut fromthequantityofmotion,and inaddition todetermineexplicitlywhat theconservedquantities along the geodesic are (conservations are related to the symmetries of the variety andhence the invarianceof theLagrangianunder theactionof thegroup). Forouruse-case, theEuler-PoincarĂ©equation isgivenby: { . ηL1=−ηL2ηTL2 . ηL2=ηL2ηL1 with ⎧⎚⎩ ηL1=R−1/2 . R 1/2 ηL2=R−1/2 . m ⇒ ⎧âŽȘâŽȘ⎚âŽȘâŽȘ⎩ ( R−1/2 . R 1/2 )‱ =−R−1/2 .m .mTR−1/2( R−1/2 .m )‱ = . R −1/2 . R 1/2 R−1/2 .m (223) IfweremarkthatwehaveR−1/2 . R 1/2 =R−1/2 ( R−1/2 . R ) =R−1 . R, thentheconservedSouriau momentcouldbegivenby: ΠR= [ R−1/2 . R 1/2 +R−1 .mmT R−1 .m 0 0 ] = [ R−1 . R+R−1 .mmT R−1 .m 0 0 ] (224) Componentsof theSouriaumomentgive theconservedquantities thatare theclassicalelements givenbyEmmyNoetherTheorem(Souriaumoment isageometrizationofEmmyNoetherTheorem): dΠR dt = ⎡⎱⎣ d ( R−1 . R+R−1 .mmT ) dt d(R−1 . m) dt 0 0 ⎀⎄⎊=0⇒ ⎧⎚⎩ R −1 .R+R−1 .mmT=B= cste R−1 .m= b= cste (225) Fromthisconstant,wecanobtainareducedequationofgeodesic:⎧⎚⎩ . m=Rb . R=R ( B−bmT) (226) 93
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics