Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 95 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 95 - in Differential Geometrical Theory of Statistics

Image of the Page - 95 -

Image of the Page - 95 - in Differential Geometrical Theory of Statistics

Text of the Page - 95 -

Entropy2016,18, 386 The initial speedof thegeodesic isgivenby (. δ(0), . Δ(0) ) . Thegeodesicshooting isgivenbythe exponentialmap: Λ(t)=exp(tA)= ∞ ∑ n=0 (tA)n n! = ⎛⎜⎝ Δ δ ΦδT ε γT ΦT γ Γ ⎞⎟⎠withA= ⎛⎜⎝−B b 0bT 0 −bT 0 −b B ⎞⎟⎠ (235) This equation can be interpreted by group theory. A could be considered as an element of Lie algebra so(n+1,n) of the special Lorentz group SOO(n+1,n) andmore specifically as the elementpofCartanDecomposition l+pwhere l is theLiealgebraofamaximalcompactsub-group K=S(O(n+1)×O(n))of thegroupG=SOO(n+1,n).Weknowthat its exponentialmapdefinesa geodesiconRiemannianSymetric spaceG/K. Thisequationcanbeestablishedbythe followingdevelopments: . Λ(t)=A.Λ(t)⇒ ⎛⎜⎜⎝ . Δ . δ . Φ . δ T . ε . γ T . Φ T . γ . Γ ⎞⎟⎟⎠ = ⎛⎜⎝−B b 0bT 0 −bT 0 −b B ⎞⎟⎠. ⎛⎜⎝ Δ δ ΦδT ε γT ΦT γ Γ ⎞⎟⎠ (236) Wecanthendeduce that: ⎧⎨⎩ . Δ=−BΔ+bδT . δ=−Bδ+εb (237) Ifε=1+δTΔ−1δ, then(Δ,δ) issolutiontothegeodesicequationpreviouslydefined. Sinceε(0)=1, it suffices todemonstrate that . ε= . τwhereτ=δTΔ−1δ. From . Λ(t)=Λ(t).A,usingthat . δ T =bTΔ−bTΦT,wecandeduce:{ . ε=bTδ−bTγ . τ=bTδ−bT((τ−ε)Δ−1δ+ΦTΔ−1δ) (238) Then . ε = . τ, ifγ = (τ−ε)Δ−1δ+ΦΔ−1δ, that could be verifiedusing relationΛ.Λ−1 = I, by observingthat: Λ−1=exp(−tA)=Λ(−t)= ⎡⎢⎣ Γ γ ΦTγT ε δT Φ δ Δ ⎤⎥⎦ (239) Λ.Λ−1= I⇒ { Δγ+εδ+Φδ=0 ΔΦT+δδT+ΦΔ=0 ⇒ { γ=−εΔ−1δ−Δ−1Φδ ΦTΔ−1+Δ−1δδTΔ−1+Δ−1Φ=0 ⇒ { γ=−εΔ−1δ−Δ−1Φδ ΦTΔ−1δ+τΔ−1δ+Δ−1Φδ=0 (240) Wecanthencomputeγ fromtwolastequations: γ=(τ−ε)Δ−1δ+ΦTΔ−1δ (241) As . τ=bTδ−bT((τ−ε)Δ−1δ+ΦTΔ−1δ) thenwecandeduce that .τ=bTδ−bTγandthen .τ= .ε. To interpret elements ofΛ, (Γ(t),γ(t)) = (Δ(−t),δ(−t)), opposite points to (Δ(t),δ(t)), and ε= 1+δTΔ−1δ=1+γTΓ−1γ. Then thegeodesic that goes through theorigin (0,In)with initial tangent vector (b,−B) is the curvegivenby (δ(t),Δ(t)). Then thedistancecomputation is reducedtoestimate the initial tangent 95
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics