Page - 95 - in Differential Geometrical Theory of Statistics
Image of the Page - 95 -
Text of the Page - 95 -
Entropy2016,18, 386
The initial speedof thegeodesic isgivenby (.
δ(0), .
Δ(0)
)
. Thegeodesicshooting isgivenbythe
exponentialmap:
Λ(t)=exp(tA)= ∞
∑
n=0 (tA)n
n! = ⎛⎜⎝ Δ δ
ΦδT
ε γT
ΦT γ Γ ⎞⎟⎠withA= ⎛⎜⎝−B b
0bT
0 −bT
0 −b B ⎞⎟⎠ (235)
This equation can be interpreted by group theory. A could be considered as an element
of Lie algebra so(n+1,n) of the special Lorentz group SOO(n+1,n) andmore specifically as the
elementpofCartanDecomposition l+pwhere l is theLiealgebraofamaximalcompactsub-group
K=S(O(n+1)×O(n))of thegroupG=SOO(n+1,n).Weknowthat its exponentialmapdefinesa
geodesiconRiemannianSymetric spaceG/K.
Thisequationcanbeestablishedbythe followingdevelopments:
.
Λ(t)=A.Λ(t)⇒ ⎛⎜⎜⎝ .
Δ .
δ .
Φ
.
δ
T .
ε .
γ
T
.
Φ
T .
γ .
Γ ⎞⎟⎟⎠ = ⎛⎜⎝−B b
0bT
0 −bT
0 −b B ⎞⎟⎠. ⎛⎜⎝ Δ δ
ΦδT
ε γT
ΦT γ Γ ⎞⎟⎠ (236)
Wecanthendeduce that: ⎧⎨⎩ .
Δ=−BΔ+bδT
.
δ=−Bδ+εb (237)
Ifε=1+δTΔ−1δ, then(Δ,δ) issolutiontothegeodesicequationpreviouslydefined. Sinceε(0)=1,
it suffices todemonstrate that .
ε= .
τwhereτ=δTΔ−1δ.
From .
Λ(t)=Λ(t).A,usingthat .
δ
T
=bTΔ−bTΦT,wecandeduce:{
.
ε=bTδ−bTγ
.
τ=bTδ−bT((τ−ε)Δ−1δ+ΦTΔ−1δ) (238)
Then .
ε = .
τ, ifγ = (τ−ε)Δ−1δ+ΦΔ−1δ, that could be verifiedusing relationΛ.Λ−1 = I, by
observingthat:
Λ−1=exp(−tA)=Λ(−t)= ⎡⎢⎣ Γ γ
ΦTγT
ε δT
Φ δ Δ ⎤⎥⎦ (239)
Λ.Λ−1= I⇒ {
Δγ+εδ+Φδ=0
ΔΦT+δδT+ΦΔ=0 ⇒ { γ=−εΔ−1δ−Δ−1Φδ
ΦTΔ−1+Δ−1δδTΔ−1+Δ−1Φ=0 ⇒ { γ=−εΔ−1δ−Δ−1Φδ
ΦTΔ−1δ+τΔ−1δ+Δ−1Φδ=0 (240)
Wecanthencomputeγ fromtwolastequations:
γ=(τ−ε)Δ−1δ+ΦTΔ−1δ (241)
As .
τ=bTδ−bT((τ−ε)Δ−1δ+ΦTΔ−1δ) thenwecandeduce that .τ=bTδ−bTγandthen .τ= .ε.
To interpret elements ofΛ, (Γ(t),γ(t)) = (Δ(−t),δ(−t)), opposite points to (Δ(t),δ(t)), and ε=
1+δTΔ−1δ=1+γTΓ−1γ.
Then thegeodesic that goes through theorigin (0,In)with initial tangent vector (b,−B) is the
curvegivenby (δ(t),Δ(t)). Then thedistancecomputation is reducedtoestimate the initial tangent
95
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik