Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 95 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 95 - in Differential Geometrical Theory of Statistics

Bild der Seite - 95 -

Bild der Seite - 95 - in Differential Geometrical Theory of Statistics

Text der Seite - 95 -

Entropy2016,18, 386 The initial speedof thegeodesic isgivenby (. δ(0), . Δ(0) ) . Thegeodesicshooting isgivenbythe exponentialmap: Λ(t)=exp(tA)= ∞ ∑ n=0 (tA)n n! = ⎛⎜⎝ Δ δ ΦδT ε γT ΦT γ Γ ⎞⎟⎠withA= ⎛⎜⎝−B b 0bT 0 −bT 0 −b B ⎞⎟⎠ (235) This equation can be interpreted by group theory. A could be considered as an element of Lie algebra so(n+1,n) of the special Lorentz group SOO(n+1,n) andmore specifically as the elementpofCartanDecomposition l+pwhere l is theLiealgebraofamaximalcompactsub-group K=S(O(n+1)×O(n))of thegroupG=SOO(n+1,n).Weknowthat its exponentialmapdefinesa geodesiconRiemannianSymetric spaceG/K. Thisequationcanbeestablishedbythe followingdevelopments: . Λ(t)=A.Λ(t)⇒ ⎛⎜⎜⎝ . Δ . δ . Φ . δ T . ε . γ T . Φ T . γ . Γ ⎞⎟⎟⎠ = ⎛⎜⎝−B b 0bT 0 −bT 0 −b B ⎞⎟⎠. ⎛⎜⎝ Δ δ ΦδT ε γT ΦT γ Γ ⎞⎟⎠ (236) Wecanthendeduce that: ⎧⎨⎩ . Δ=−BΔ+bδT . δ=−Bδ+εb (237) Ifε=1+δTΔ−1δ, then(Δ,δ) issolutiontothegeodesicequationpreviouslydefined. Sinceε(0)=1, it suffices todemonstrate that . ε= . τwhereτ=δTΔ−1δ. From . Λ(t)=Λ(t).A,usingthat . δ T =bTΔ−bTΦT,wecandeduce:{ . ε=bTδ−bTγ . τ=bTδ−bT((τ−ε)Δ−1δ+ΦTΔ−1δ) (238) Then . ε = . τ, ifγ = (τ−ε)Δ−1δ+ΦΔ−1δ, that could be verifiedusing relationΛ.Λ−1 = I, by observingthat: Λ−1=exp(−tA)=Λ(−t)= ⎡⎢⎣ Γ γ ΦTγT ε δT Φ δ Δ ⎤⎥⎦ (239) Λ.Λ−1= I⇒ { Δγ+εδ+Φδ=0 ΔΦT+δδT+ΦΔ=0 ⇒ { γ=−εΔ−1δ−Δ−1Φδ ΦTΔ−1+Δ−1δδTΔ−1+Δ−1Φ=0 ⇒ { γ=−εΔ−1δ−Δ−1Φδ ΦTΔ−1δ+τΔ−1δ+Δ−1Φδ=0 (240) Wecanthencomputeγ fromtwolastequations: γ=(τ−ε)Δ−1δ+ΦTΔ−1δ (241) As . τ=bTδ−bT((τ−ε)Δ−1δ+ΦTΔ−1δ) thenwecandeduce that .τ=bTδ−bTγandthen .τ= .ε. To interpret elements ofΛ, (Γ(t),γ(t)) = (Δ(−t),δ(−t)), opposite points to (Δ(t),δ(t)), and ε= 1+δTΔ−1δ=1+γTΓ−1γ. Then thegeodesic that goes through theorigin (0,In)with initial tangent vector (b,−B) is the curvegivenby (δ(t),Δ(t)). Then thedistancecomputation is reducedtoestimate the initial tangent 95
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics