Page - 96 - in Differential Geometrical Theory of Statistics
Image of the Page - 96 -
Text of the Page - 96 -
Entropy2016,18, 386
vectorspacerelatedby (
R−1(0)
.m(0),R−1(0) ( .
R(0)+ .
m(0)m(0)T ))
=(b,B)∈Rn×Symn(R)Thedistance
willbe thengivenbythe initial tangentvector:
d= √
.
m(0)TR−1(0)
.m(0)+1
2 Tr [(
R−1(0) .
R(0)
)2]
(242)
This initial tangentvectorwillbe identifiedby“GeodesicShooting”. LetV=
logAB:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dVm
dt = 1
2 (
dR
dt )
R−1Vm+ 1
2 VRR−1 (
dm
dt )
dVR
dt = 1
2 ((
dR
dt )
R−1Vm+VRR−1 (
dR
dt ))
− 1
2 ((
dm
dt )
VTm+VTm (
dm
dt )) (243)
GeodesicShooting is correctedbyusing JacobiField Jandparallel transport: J(t)= ∂χα(t)∂α ∣∣∣
t=0
solutionto d 2J(t)
dt2 +R (
J(t), .
χ(t) ) .
χ(t)=0withR theRiemannCurvarture tensor.
Weconsiderageodesicχbetweenθ0 andθ1withan initial tangentvectorV, andwesuppose that
V isperturbatedbyW, toV+W. Thevariationof thefinalpointθ1 canbedeterminedthanks to the
Jacobifieldwith J(0)=0and .
J(0)=W. In termof theexponentialmap, thiscouldbewritten:
J(t)= d
dα expθ0 (t(V+αW)) ∣∣∣∣
α=0 (244)
Thiscouldbe illustrated in theFigure13:
Figure13.Geodesicshootingprinciple.
Wegivesomeillustration, inFigure14,ofgeodesic shooting tocompute thedistancebetween
multivariateGaussiandensity for thecasen=2:
96
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik