Seite - 96 - in Differential Geometrical Theory of Statistics
Bild der Seite - 96 -
Text der Seite - 96 -
Entropy2016,18, 386
vectorspacerelatedby (
Râ1(0)
.m(0),Râ1(0) ( .
R(0)+ .
m(0)m(0)T ))
=(b,B)âRnĂSymn(R)Thedistance
willbe thengivenbythe initial tangentvector:
d= â
.
m(0)TRâ1(0)
.m(0)+1
2 Tr [(
Râ1(0) .
R(0)
)2]
(242)
This initial tangentvectorwillbe identiïŹedbyâGeodesicShootingâ. LetV=
logAB:â§âȘâȘâȘâšâȘâȘâȘâ©
dVm
dt = 1
2 (
dR
dt )
Râ1Vm+ 1
2 VRRâ1 (
dm
dt )
dVR
dt = 1
2 ((
dR
dt )
Râ1Vm+VRRâ1 (
dR
dt ))
â 1
2 ((
dm
dt )
VTm+VTm (
dm
dt )) (243)
GeodesicShooting is correctedbyusing JacobiField Jandparallel transport: J(t)= âÏα(t)âα âŁâŁâŁ
t=0
solutionto d 2J(t)
dt2 +R (
J(t), .
Ï(t) ) .
Ï(t)=0withR theRiemannCurvarture tensor.
WeconsiderageodesicÏbetweenΞ0 andΞ1withan initial tangentvectorV, andwesuppose that
V isperturbatedbyW, toV+W. Thevariationof theïŹnalpointΞ1 canbedeterminedthanks to the
JacobiïŹeldwith J(0)=0and .
J(0)=W. In termof theexponentialmap, thiscouldbewritten:
J(t)= d
dα expΞ0 (t(V+αW)) âŁâŁâŁâŁ
α=0 (244)
Thiscouldbe illustrated in theFigure13:
Figure13.Geodesicshootingprinciple.
Wegivesomeillustration, inFigure14,ofgeodesic shooting tocompute thedistancebetween
multivariateGaussiandensity for thecasen=2:
96
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik