Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 100 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 100 - in Differential Geometrical Theory of Statistics

Image of the Page - 100 -

Image of the Page - 100 - in Differential Geometrical Theory of Statistics

Text of the Page - 100 -

Entropy2016,18, 386 Wecanthenwrite theSouriau-Fishermetricas: Θ˜ÎČ(Z1,Z2)= J[Z1,Z2]− { JZ1, JZ2 } + 〈 Οˆ, [Z1,Z2] âŒȘ (269) Where theassociateddifferentiableapplication J, calledmomentmapis: J : M→ g∗ suchthat JX(x)= 〈J(x),X〉 , X∈ g x → J(x) (270) Thismomentmapcouldbe identiïŹedwiththeoperator that transformstherightalgebra toan elementof itsdualalgebragivenby: ÎČM : g→ g∗ Z= [ N η 0 0 ] → J= [ N ( 1+mTR−1m ) +ηmTR−1 NR−1m+R−1η 0 0 ] (271) 10.Conclusions In thispaper,wehavedevelopedaSouriaumodelofLiegroupthermodynamics that recovers the symmetrybrokenby lackof covarianceofGibbsdensity in classical statisticalmechanicswith respect todynamicgroupsaction inphysics (GalileoandPoincarĂ©groups, sub-groupofafïŹnegroup). TheontologicalmodelofSouriaugivesgeometricstatusto(Planck)temperature(elementofLiealebra), heat (elementofdualLie algebra) andentropy. Souriau said inoneofhispapers [30] on thisnew “Liegroupthermodynamics” that“these formulasareuniversal, in that theydonot involve the symplectic manifold, butonlygroupG, the symplectic cocycle. Perhaps thisLiegroup thermodynamics couldbeof interest formathematics”. For thisnewcovariant thermodynamics, the fundamental notion is the coadjoint orbit that is linkedtopositivedeïŹniteKKS(Kostant–Kirillov–Souriau)2-form[196]: ωw(X,Y)= 〈w, [U,V]〉withX= adwU∈TwMandY= adwV∈TwM (272) that is the KĂ€hler-form of aG-invariant kĂ€hler structure compatiblewith the canonical complex structureofM,anddeterminesacanonicalsymplecticstructureonM.Whenthecocycleisequaltozero, theKKSandSouriau-Fishermetricareequal. This2-formintroducedbyJean-MarieSouriau is linked to thecoadjointactionandthecoadjointorbitsof thegrouponitsmomentspace. Souriauprovided a classiïŹcation of the homogeneous symplecticmanifoldswith thismomentmap. The coadjoint representationofaLiegroupG is thedualof theadjoint representation. Ifgdenotes theLiealgebra ofG, thecorrespondingactionofGong∗, thedualspace tog, is calledthecoadjointaction. Souriau provedbasedon themomentmap that a symplecticmanifold is alwaysacoadjointorbit, afïŹneof itsgroupofHamiltonian transformations,deducing that coadjointorbits are theuniversalmodels of symplecticmanifolds: a symplecticmanifoldhomogeneousunder the actionof aLie group, is isomorphic,uptoacovering, toacoadjointorbit. So the linkbetweenSouriau-FishermetricandKKS 2-formwill providea symplectic structure and foundation to informationmanifolds. For Souriau thermodynamics, theSouriau-Fishermetric is thecanonical structure linkedtoKKS2-form,modiïŹed by the cocycle (its symplectic leaves are the orbits of the afïŹne action thatmakes equivariant the momentmap). This last property allowsus todetermine all homogeneous spaces of aLie group admittinganinvariantsymplecticstructurebytheactionofthisgroup: forexample, therearetheorbits ofthecoadjointrepresentationofthisgrouporofacentralextensionofthisgroup(thecentralextension allowingsuppressingthecocycle). ForafïŹnecoadjointorbits,wemakereference toAliceTumpach Ph.D. [197–199]whohasdevelopedpreviousworksofNeeb[200],BiquardandGauduchon[201–204]. 100
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics