Seite - 100 - in Differential Geometrical Theory of Statistics
Bild der Seite - 100 -
Text der Seite - 100 -
Entropy2016,18, 386
Wecanthenwrite theSouriau-Fishermetricas:
ÎËÎČ(Z1,Z2)= J[Z1,Z2]â {
JZ1, JZ2 }
+ â©
ΟË, [Z1,Z2] âȘ
(269)
Where theassociateddifferentiableapplication J, calledmomentmapis:
J : Mâ gâ suchthat JX(x)= ăJ(x),Xă , Xâ g
x â J(x) (270)
Thismomentmapcouldbe identiïŹedwiththeoperator that transformstherightalgebra toan
elementof itsdualalgebragivenby:
ÎČM : gâ gâ
Z= [
N η
0 0 ]
â J= [
N ( 1+mTRâ1m ) +ηmTRâ1 NRâ1m+Râ1η
0 0 ]
(271)
10.Conclusions
In thispaper,wehavedevelopedaSouriaumodelofLiegroupthermodynamics that recovers
the symmetrybrokenby lackof covarianceofGibbsdensity in classical statisticalmechanicswith
respect todynamicgroupsaction inphysics (GalileoandPoincarĂ©groups, sub-groupofafïŹnegroup).
TheontologicalmodelofSouriaugivesgeometricstatusto(Planck)temperature(elementofLiealebra),
heat (elementofdualLie algebra) andentropy. Souriau said inoneofhispapers [30] on thisnew
âLiegroupthermodynamicsâ thatâthese formulasareuniversal, in that theydonot involve the symplectic
manifold, butonlygroupG, the symplectic cocycle. Perhaps thisLiegroup thermodynamics couldbeof interest
formathematicsâ.
For thisnewcovariant thermodynamics, the fundamental notion is the coadjoint orbit that is
linkedtopositivedeïŹniteKKS(KostantâKirillovâSouriau)2-form[196]:
Ïw(X,Y)= ăw, [U,V]ăwithX= adwUâTwMandY= adwVâTwM (272)
that is the KÀhler-form of aG-invariant kÀhler structure compatiblewith the canonical complex
structureofM,anddeterminesacanonicalsymplecticstructureonM.Whenthecocycleisequaltozero,
theKKSandSouriau-Fishermetricareequal. This2-formintroducedbyJean-MarieSouriau is linked
to thecoadjointactionandthecoadjointorbitsof thegrouponitsmomentspace. Souriauprovided
a classiïŹcation of the homogeneous symplecticmanifoldswith thismomentmap. The coadjoint
representationofaLiegroupG is thedualof theadjoint representation. Ifgdenotes theLiealgebra
ofG, thecorrespondingactionofGongâ, thedualspace tog, is calledthecoadjointaction. Souriau
provedbasedon themomentmap that a symplecticmanifold is alwaysacoadjointorbit, afïŹneof
itsgroupofHamiltonian transformations,deducing that coadjointorbits are theuniversalmodels
of symplecticmanifolds: a symplecticmanifoldhomogeneousunder the actionof aLie group, is
isomorphic,uptoacovering, toacoadjointorbit. So the linkbetweenSouriau-FishermetricandKKS
2-formwill providea symplectic structure and foundation to informationmanifolds. For Souriau
thermodynamics, theSouriau-Fishermetric is thecanonical structure linkedtoKKS2-form,modiïŹed
by the cocycle (its symplectic leaves are the orbits of the afïŹne action thatmakes equivariant the
momentmap). This last property allowsus todetermine all homogeneous spaces of aLie group
admittinganinvariantsymplecticstructurebytheactionofthisgroup: forexample, therearetheorbits
ofthecoadjointrepresentationofthisgrouporofacentralextensionofthisgroup(thecentralextension
allowingsuppressingthecocycle). ForafïŹnecoadjointorbits,wemakereference toAliceTumpach
Ph.D. [197â199]whohasdevelopedpreviousworksofNeeb[200],BiquardandGauduchon[201â204].
100
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik