Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 100 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 100 - in Differential Geometrical Theory of Statistics

Bild der Seite - 100 -

Bild der Seite - 100 - in Differential Geometrical Theory of Statistics

Text der Seite - 100 -

Entropy2016,18, 386 Wecanthenwrite theSouriau-Fishermetricas: Θ˜ÎČ(Z1,Z2)= J[Z1,Z2]− { JZ1, JZ2 } + 〈 Οˆ, [Z1,Z2] âŒȘ (269) Where theassociateddifferentiableapplication J, calledmomentmapis: J : M→ g∗ suchthat JX(x)= 〈J(x),X〉 , X∈ g x → J(x) (270) Thismomentmapcouldbe identiïŹedwiththeoperator that transformstherightalgebra toan elementof itsdualalgebragivenby: ÎČM : g→ g∗ Z= [ N η 0 0 ] → J= [ N ( 1+mTR−1m ) +ηmTR−1 NR−1m+R−1η 0 0 ] (271) 10.Conclusions In thispaper,wehavedevelopedaSouriaumodelofLiegroupthermodynamics that recovers the symmetrybrokenby lackof covarianceofGibbsdensity in classical statisticalmechanicswith respect todynamicgroupsaction inphysics (GalileoandPoincarĂ©groups, sub-groupofafïŹnegroup). TheontologicalmodelofSouriaugivesgeometricstatusto(Planck)temperature(elementofLiealebra), heat (elementofdualLie algebra) andentropy. Souriau said inoneofhispapers [30] on thisnew “Liegroupthermodynamics” that“these formulasareuniversal, in that theydonot involve the symplectic manifold, butonlygroupG, the symplectic cocycle. Perhaps thisLiegroup thermodynamics couldbeof interest formathematics”. For thisnewcovariant thermodynamics, the fundamental notion is the coadjoint orbit that is linkedtopositivedeïŹniteKKS(Kostant–Kirillov–Souriau)2-form[196]: ωw(X,Y)= 〈w, [U,V]〉withX= adwU∈TwMandY= adwV∈TwM (272) that is the KĂ€hler-form of aG-invariant kĂ€hler structure compatiblewith the canonical complex structureofM,anddeterminesacanonicalsymplecticstructureonM.Whenthecocycleisequaltozero, theKKSandSouriau-Fishermetricareequal. This2-formintroducedbyJean-MarieSouriau is linked to thecoadjointactionandthecoadjointorbitsof thegrouponitsmomentspace. Souriauprovided a classiïŹcation of the homogeneous symplecticmanifoldswith thismomentmap. The coadjoint representationofaLiegroupG is thedualof theadjoint representation. Ifgdenotes theLiealgebra ofG, thecorrespondingactionofGong∗, thedualspace tog, is calledthecoadjointaction. Souriau provedbasedon themomentmap that a symplecticmanifold is alwaysacoadjointorbit, afïŹneof itsgroupofHamiltonian transformations,deducing that coadjointorbits are theuniversalmodels of symplecticmanifolds: a symplecticmanifoldhomogeneousunder the actionof aLie group, is isomorphic,uptoacovering, toacoadjointorbit. So the linkbetweenSouriau-FishermetricandKKS 2-formwill providea symplectic structure and foundation to informationmanifolds. For Souriau thermodynamics, theSouriau-Fishermetric is thecanonical structure linkedtoKKS2-form,modiïŹed by the cocycle (its symplectic leaves are the orbits of the afïŹne action thatmakes equivariant the momentmap). This last property allowsus todetermine all homogeneous spaces of aLie group admittinganinvariantsymplecticstructurebytheactionofthisgroup: forexample, therearetheorbits ofthecoadjointrepresentationofthisgrouporofacentralextensionofthisgroup(thecentralextension allowingsuppressingthecocycle). ForafïŹnecoadjointorbits,wemakereference toAliceTumpach Ph.D. [197–199]whohasdevelopedpreviousworksofNeeb[200],BiquardandGauduchon[201–204]. 100
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics