Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 101 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 101 - in Differential Geometrical Theory of Statistics

Image of the Page - 101 -

Image of the Page - 101 - in Differential Geometrical Theory of Statistics

Text of the Page - 101 -

Entropy2016,18, 386 Other promising domains of research are theory of generatingmaps [205–208] and the link with Poisson geometry through affinePoisson group. As observed byPierreDazord [209] in his paper“GroupedePoissonAffines”, theextensionof aPoissongroup toanaffinePoissongroupdue toDrinfel’d [210] includes theaffinestructuresofSouriauondualLiealgebra. ForanaffinePoisson group, itsuniversal coveringcouldbe identifiedtoavectorspacewithanassociatedaffinestructure. If this vector space is an abelian affinePoissongroup,we canfind the affine structure of Souriau. For theabeliangroup (R3,+), affinePoissongroupsare theaffinestructuresofSouriau. SouriaumodelofLiegroupthermodynamicscouldbeapromisingwaytoachieveRenéThom’s dreamtoreplace thermodynamicsbygeometry [211,212], andcouldbeextendedto thesecondorder extensionof theGibbsstate [213,214]. We could explore the links between “stochastic mechanics” (mécanique alétoire) developed by Jean-Michel Bismut based on Malliavin Calculus (stochastic calculus of variations) and Souriau “Liegroupthermodynamics”,especially toextendcovariantSouriauGibbsdensityonthestochastic symplecticmanifold (e.g., tomodelcentrifugewithrandomvibratingaxeandtheGibbsdensity). We have seen that Souriau has replaced classicalMaximumEntropy approach by replacing Lagrangeparametersbyonlyonegeometric“temperaturevector”aselementofLiealgebra. Inparallel, as refered in [15], Ingardenhas introduced [213,214] second andhigher order temperature of the Gibbs state that could be extended to Souriau theory of thermodynamics. Ingardenhigher order temperaturescouldbedefinedinthecasewhennovariational is considered,butwhenaprobability distributiondependingonmore thanoneparameter. Ithasbeenobserved that Ingardencan fail if the followingassumptionsarenot fulfilled: thenumberof componentsof the sumgoes to infinity and the components of the sumare stochastically independent. Gibbs hypothesis can also fail if stochastic interactionswith theenvironmentarenot sufficientlyweak. Inall these cases,wenever observeabsolute thermalequilibriumofGibbs typebutonlyflowsor turbulence.Nonequilibrium thermodynamicscouldbe indirectlyaddressedbymeansof theconceptofhighorder temperatures. MomentumQ = ∂Φ(β)∂β should be replaced byhigher ordermoments given by the relationQk = ∂Φ(β1,...,βn) ∂βk = M Uk(ξ) ·e − n∑ k=1 〈βk,Uk(ξ)〉 dω M e − n∑ k=1 〈βk,Uk(ξ)〉 dω defined by extendedMassieu characteristic function Φ(β1,...,βn) =−log M e − n∑ k=1 〈βk,Uk(ξ)〉 dω. Entropy isdefinedbyLegendre transformof thisMassieu characteristic functionS(Q1,...,Qn)= n ∑ k=1 〈βk,Qk〉−Φ(β1,...,βn)whereβk= ∂S(Q1,...,Qn)∂Qk .Weare able also to define high order thermal capacities given byKk = −∂Qk∂βk . TheGibbs density could be thenextendedwith respect tohighorder temperaturesby pGibbs(ξ) = e n ∑ k=1 〈βk,Uk(ξ)〉−Φ(β1,...,βn) = e − n∑ k=1 〈βk,Uk(ξ)〉 M e − n∑ k=1 〈βk,Uk(ξ)〉 dω . We also have tomake reference to theworks of Streater [16],Nencka [215] andBurdet [216]. NenckaandStreater [215], forcertainunitaryrepresentationsofaLiealgebrag,definethestatistical manifoldMofstatesas theconvexconeofX∈ g forwhichthepartitionfunctionZ=Tr [exp(−X)] isfinite. TheHessianof logZdefinesaRiemannianmetricgondualLiealgebrag∗. Theyobserve that g∗ foliates into theunionofcoadjointorbits, eachofwhichcanbegivenacomplexKostantstructure (thatofKostant). 101
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics