Seite - 101 - in Differential Geometrical Theory of Statistics
Bild der Seite - 101 -
Text der Seite - 101 -
Entropy2016,18, 386
Other promising domains of research are theory of generatingmaps [205–208] and the link
with Poisson geometry through affinePoisson group. As observed byPierreDazord [209] in his
paper“GroupedePoissonAffines”, theextensionof aPoissongroup toanaffinePoissongroupdue
toDrinfel’d [210] includes theaffinestructuresofSouriauondualLiealgebra. ForanaffinePoisson
group, itsuniversal coveringcouldbe identifiedtoavectorspacewithanassociatedaffinestructure.
If this vector space is an abelian affinePoissongroup,we canfind the affine structure of Souriau.
For theabeliangroup (R3,+), affinePoissongroupsare theaffinestructuresofSouriau.
SouriaumodelofLiegroupthermodynamicscouldbeapromisingwaytoachieveRenéThom’s
dreamtoreplace thermodynamicsbygeometry [211,212], andcouldbeextendedto thesecondorder
extensionof theGibbsstate [213,214].
We could explore the links between “stochastic mechanics” (mécanique alétoire) developed by
Jean-Michel Bismut based on Malliavin Calculus (stochastic calculus of variations) and Souriau
“Liegroupthermodynamics”,especially toextendcovariantSouriauGibbsdensityonthestochastic
symplecticmanifold (e.g., tomodelcentrifugewithrandomvibratingaxeandtheGibbsdensity).
We have seen that Souriau has replaced classicalMaximumEntropy approach by replacing
Lagrangeparametersbyonlyonegeometric“temperaturevector”aselementofLiealgebra. Inparallel,
as refered in [15], Ingardenhas introduced [213,214] second andhigher order temperature of the
Gibbs state that could be extended to Souriau theory of thermodynamics. Ingardenhigher order
temperaturescouldbedefinedinthecasewhennovariational is considered,butwhenaprobability
distributiondependingonmore thanoneparameter. Ithasbeenobserved that Ingardencan fail if
the followingassumptionsarenot fulfilled: thenumberof componentsof the sumgoes to infinity
and the components of the sumare stochastically independent. Gibbs hypothesis can also fail if
stochastic interactionswith theenvironmentarenot sufficientlyweak. Inall these cases,wenever
observeabsolute thermalequilibriumofGibbs typebutonlyflowsor turbulence.Nonequilibrium
thermodynamicscouldbe indirectlyaddressedbymeansof theconceptofhighorder temperatures.
MomentumQ = ∂Φ(β)∂β should be replaced byhigher ordermoments given by the relationQk =
∂Φ(β1,...,βn)
∂βk = M Uk(ξ) ·e − n∑
k=1 〈βk,Uk(ξ)〉
dω
M e − n∑
k=1 〈βk,Uk(ξ)〉
dω defined by extendedMassieu characteristic function
Φ(β1,...,βn) =−log
M e − n∑
k=1 〈βk,Uk(ξ)〉
dω. Entropy isdefinedbyLegendre transformof thisMassieu
characteristic functionS(Q1,...,Qn)= n
∑
k=1 〈βk,Qk〉−Φ(β1,...,βn)whereβk= ∂S(Q1,...,Qn)∂Qk .Weare
able also to define high order thermal capacities given byKk = −∂Qk∂βk . TheGibbs density could
be thenextendedwith respect tohighorder temperaturesby pGibbs(ξ) = e n
∑
k=1 〈βk,Uk(ξ)〉−Φ(β1,...,βn)
=
e − n∑
k=1 〈βk,Uk(ξ)〉
M e − n∑
k=1 〈βk,Uk(ξ)〉
dω .
We also have tomake reference to theworks of Streater [16],Nencka [215] andBurdet [216].
NenckaandStreater [215], forcertainunitaryrepresentationsofaLiealgebrag,definethestatistical
manifoldMofstatesas theconvexconeofX∈ g forwhichthepartitionfunctionZ=Tr [exp(−X)]
isfinite. TheHessianof logZdefinesaRiemannianmetricgondualLiealgebrag∗. Theyobserve that
g∗ foliates into theunionofcoadjointorbits, eachofwhichcanbegivenacomplexKostantstructure
(thatofKostant).
101
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik