Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 107 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 107 - in Differential Geometrical Theory of Statistics

Image of the Page - 107 -

Image of the Page - 107 - in Differential Geometrical Theory of Statistics

Text of the Page - 107 -

Entropy2016,18, 386 Wecanrewrite theestimatoras: H′(X1,...,Xn)= 1 n [h(X1)+ ...+h(Xn)] (A32) andcompute theassociatedempiricalvalue: t=H′(x1,...,xn)= 1 n∑i h(xi)= θ+λ(θ)∑ i ∂logpθ(xi) ∂θ Ifwetakeθ= t,wehaveasλ(θ)>0: ∑ i ∂logpt(xi) ∂t =0 (A33) When pθ(x) is adistinguished function, the empirical value tof θ corresponding to a sample x1,...,xn is a root of previous equation in t. This equation has a root and only onewhenX is a distinguishedvariable. Indeed,aswehave: pθ(x)= e ∂Φ(θ) ∂θ [h(x)−θ]+Φ(θ)+ (x) (A34) ∑ i ∂logpt(xi) ∂t = ∂2Φ(t) ∂t2 ⎡⎣∑i h(xi) n − t ⎤⎦with ∂2Φ(t) ∂t2 >0 (A35) Wecanthenrecover theuniqueroot: t= ∑ i h(xi) n . This function T ≡ H′(X1,...,Xn) = 1n∑ i h(Xi) can have an arbitrary form, that is a sumof functionsofeachonlyoneof thequantitiesandit iseventhearithmeticaverageofNvaluesofasame auxiliaryrandomvariableY= h(X). Thedispersion isgivenby: (σTn) 2= 1 n(σA) 2 = 1 n +∞ −∞ [ ∂pθ(x) ∂θ ]2 dx pθ(x) = 1 n ∂2Φ(θ) ∂θ2 (A36) andTn followstheprobabilitydensity: pθ(t)= √ n 1 σA √ 2π e −n(t−θ)2 2·σ2A with (σA) 2= ∂2Φ(θ) ∂θ2 (A37) ClairautEquationandLegendreTransform Wehave just observed that Fréchet shows thatdistinguished functionsdependona function Φ(θ), solutionof theClairautequation: Φ(θ)= θ · ∂Φ(θ) ∂θ −Ψ ( ∂Φ(θ) ∂θ ) (A38) OrgivenbytheLegendre transform: Φ= θ ·s−Ψ(s) andθ= ∂Ψ(s) ∂s (A39) Fréchetalsoobservedthat this functionΦ(θ)couldberewritten: Φ(θ)=−log +∞ −∞ es·h(x)+ (x)dx+θ ·swheres isgivenimplicitlyby +∞ −∞ es·h(x)+ (x) [h(x)−θ]dx=0. 107
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics