Seite - 107 - in Differential Geometrical Theory of Statistics
Bild der Seite - 107 -
Text der Seite - 107 -
Entropy2016,18, 386
Wecanrewrite theestimatoras:
H′(X1,...,Xn)= 1
n [h(X1)+ ...+h(Xn)] (A32)
andcompute theassociatedempiricalvalue:
t=H′(x1,...,xn)= 1
n∑i h(xi)= θ+λ(θ)∑
i ∂logpθ(xi)
∂θ
Ifwetakeθ= t,wehaveasλ(θ)>0:
∑
i ∂logpt(xi)
∂t =0 (A33)
When pθ(x) is adistinguished function, the empirical value tof θ corresponding to a sample
x1,...,xn is a root of previous equation in t. This equation has a root and only onewhenX is a
distinguishedvariable. Indeed,aswehave:
pθ(x)= e ∂Φ(θ)
∂θ [h(x)−θ]+Φ(θ)+ (x) (A34)
∑
i ∂logpt(xi)
∂t = ∂2Φ(t)
∂t2 ⎡⎣∑i h(xi)
n − t ⎤⎦with ∂2Φ(t)
∂t2 >0 (A35)
Wecanthenrecover theuniqueroot: t= ∑
i h(xi)
n .
This function T ≡ H′(X1,...,Xn) = 1n∑
i h(Xi) can have an arbitrary form, that is a sumof
functionsofeachonlyoneof thequantitiesandit iseventhearithmeticaverageofNvaluesofasame
auxiliaryrandomvariableY= h(X). Thedispersion isgivenby:
(σTn) 2= 1
n(σA) 2 = 1
n +∞
−∞ [
∂pθ(x)
∂θ ]2 dx
pθ(x) = 1
n ∂2Φ(θ)
∂θ2 (A36)
andTn followstheprobabilitydensity:
pθ(t)= √
n 1
σA √
2π e −n(t−θ)2
2·σ2A with (σA) 2= ∂2Φ(θ)
∂θ2 (A37)
ClairautEquationandLegendreTransform
Wehave just observed that Fréchet shows thatdistinguished functionsdependona function
Φ(θ), solutionof theClairautequation:
Φ(θ)= θ · ∂Φ(θ)
∂θ −Ψ (
∂Φ(θ)
∂θ )
(A38)
OrgivenbytheLegendre transform:
Φ= θ ·s−Ψ(s) andθ= ∂Ψ(s)
∂s (A39)
Fréchetalsoobservedthat this functionΦ(θ)couldberewritten:
Φ(θ)=−log +∞
−∞ es·h(x)+ (x)dx+θ ·swheres isgivenimplicitlyby +∞
−∞ es·h(x)+ (x) [h(x)−θ]dx=0.
107
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik