Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 109 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 109 - in Differential Geometrical Theory of Statistics

Image of the Page - 109 -

Image of the Page - 109 - in Differential Geometrical Theory of Statistics

Text of the Page - 109 -

Entropy2016,18, 386 AnythermodynamicmanifoldMbelongs to thesetof theso-calledLagrangianmanifolds inT, whichare the integral submanifoldsofdωwithmaximumdimension(n+1).Moreover,Misgauge invariant,which is impliedbyω=0. Theextensivityof theentropyfunctionS ( q1,...,qn ) is expressed bytheGibbs-DuhemrelationS= n ∑ i=1 qi ∂S ∂qi , rewrittenwithpreviousrelation n ∑ i=0 piqi=0,defininga2n+ 1-dimensionalextensivitysheet inT,where the thermodynamicmanifoldsM should lie. Considering aninfinitesimalcanonical transformation,generatedbytheHamiltonianh(q0,q1,...,qn,p0,p1,...,pn), . qi= ∂h ∂pi and . pi= ∂h ∂qi , theHamilton’sequationsaregivenbyPoissonbracket: . g={g,h}= n ∑ i=0 ∂g ∂qi ∂h ∂pi − ∂h ∂qi ∂g ∂pi (B5) Theconcavityof theentropyS ( q1,...,qn ) , as functionof theextensivevariables, expresses the stabilityofequilibriumstates. ThispropertyproducesconstraintsonthephysicalmanifoldsM in the 2n+2-dimensionalspace. Itentails theexistenceofametricstructure in then-dimensionalspaceqi relyingonthequadratic form: ds2=−d2S=− n ∑ i,j=1 ∂2S ∂qi∂qj dqidqj (B6) whichdefinesadistancebetweentwoneighboringthermodynamicstates. Asdγi= n ∑ j=1 ∂2S ∂qi∂qj dqj, then:ds2=− n ∑ i=1 dγidqi= 1 p0 n ∑ i=0 dpidqi (B7) The factor1/p0 ensuresgauge invariance. Inacontinuous transformationgeneratedbyh, themetric evolvesaccordingto: d dτ (ds2)= 1 p0 ∂h ∂q0 ds2+ 1 p0 n ∑ i,j=0 ( ∂2h ∂qi∂pj dpidpj− ∂ 2h ∂qi∂qj dqidqj ) (B8) We can observe that this gauge theory of thermodynamics is compatible with Souriau Lie groupTthermodynamics, wherewe have to consider the Souriau vector β = ⎡⎢⎣ γ1... γn ⎤⎥⎦, transformed inanewvector: pi=−p0.γi, p= ⎡⎢⎣ −p0γ1... −p0γn ⎤⎥⎦ =−p0 ·β (B9) AppendixC. Casalis-LetacAffineGroupInvarianceforNaturalExponentialFamilies Thecharacterizationof thenatural exponential familiesofRdwhicharepreservedbyagroup ofaffine transformationshasbeenexaminedbyMurielCasalis inherPh.D. [173]andherdifferent papers [172,174–178].Hermethodhasconsistedof translatingthe invariancepropertyof the family intoapropertyconcerningthemeasureswhichgenerate it, andtocharacterizesuchmeasures. LetEavectorspaceoffinitesize,E∗ itsdual. 〈θ,x〉dualitybracketwith(θ,x)∈E∗×E.μpositive RadonmeasureonE,Laplace transformis: Lμ :E∗→ [0,∞]withθ →Lμ(θ)= E e〈θ,x〉μ(dx) (C1) 109
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics