Page - 109 - in Differential Geometrical Theory of Statistics
Image of the Page - 109 -
Text of the Page - 109 -
Entropy2016,18, 386
AnythermodynamicmanifoldMbelongs to thesetof theso-calledLagrangianmanifolds inT,
whichare the integral submanifoldsofdωwithmaximumdimension(n+1).Moreover,Misgauge
invariant,which is impliedbyω=0. Theextensivityof theentropyfunctionS ( q1,...,qn )
is expressed
bytheGibbs-DuhemrelationS= n
∑
i=1 qi ∂S
∂qi , rewrittenwithpreviousrelation n
∑
i=0 piqi=0,defininga2n+
1-dimensionalextensivitysheet inT,where the thermodynamicmanifoldsM should lie. Considering
aninfinitesimalcanonical transformation,generatedbytheHamiltonianh(q0,q1,...,qn,p0,p1,...,pn),
.
qi= ∂h
∂pi and .
pi= ∂h
∂qi , theHamilton’sequationsaregivenbyPoissonbracket:
.
g={g,h}= n
∑
i=0 ∂g
∂qi ∂h
∂pi − ∂h
∂qi ∂g
∂pi (B5)
Theconcavityof theentropyS ( q1,...,qn )
, as functionof theextensivevariables, expresses the
stabilityofequilibriumstates. ThispropertyproducesconstraintsonthephysicalmanifoldsM in the
2n+2-dimensionalspace. Itentails theexistenceofametricstructure in then-dimensionalspaceqi
relyingonthequadratic form:
ds2=−d2S=− n
∑
i,j=1 ∂2S
∂qi∂qj dqidqj (B6)
whichdefinesadistancebetweentwoneighboringthermodynamicstates.
Asdγi= n
∑
j=1 ∂2S
∂qi∂qj dqj, then:ds2=− n
∑
i=1 dγidqi= 1
p0 n
∑
i=0 dpidqi (B7)
The factor1/p0 ensuresgauge invariance. Inacontinuous transformationgeneratedbyh, themetric
evolvesaccordingto:
d
dτ (ds2)= 1
p0 ∂h
∂q0 ds2+ 1
p0 n
∑
i,j=0 (
∂2h
∂qi∂pj dpidpj− ∂ 2h
∂qi∂qj dqidqj )
(B8)
We can observe that this gauge theory of thermodynamics is compatible with Souriau Lie
groupTthermodynamics, wherewe have to consider the Souriau vector β = ⎡⎢⎣ γ1...
γn ⎤⎥⎦, transformed
inanewvector:
pi=−p0.γi, p= ⎡⎢⎣ −p0γ1...
−p0γn ⎤⎥⎦ =−p0 ·β (B9)
AppendixC. Casalis-LetacAffineGroupInvarianceforNaturalExponentialFamilies
Thecharacterizationof thenatural exponential familiesofRdwhicharepreservedbyagroup
ofaffine transformationshasbeenexaminedbyMurielCasalis inherPh.D. [173]andherdifferent
papers [172,174–178].Hermethodhasconsistedof translatingthe invariancepropertyof the family
intoapropertyconcerningthemeasureswhichgenerate it, andtocharacterizesuchmeasures.
LetEavectorspaceoffinitesize,E∗ itsdual. 〈θ,x〉dualitybracketwith(θ,x)∈E∗×E.μpositive
RadonmeasureonE,Laplace transformis:
Lμ :E∗→ [0,∞]withθ →Lμ(θ)=
E e〈θ,x〉μ(dx) (C1)
109
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik