Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 109 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 109 - in Differential Geometrical Theory of Statistics

Bild der Seite - 109 -

Bild der Seite - 109 - in Differential Geometrical Theory of Statistics

Text der Seite - 109 -

Entropy2016,18, 386 AnythermodynamicmanifoldMbelongs to thesetof theso-calledLagrangianmanifolds inT, whichare the integral submanifoldsofdωwithmaximumdimension(n+1).Moreover,Misgauge invariant,which is impliedbyω=0. Theextensivityof theentropyfunctionS ( q1,...,qn ) is expressed bytheGibbs-DuhemrelationS= n ∑ i=1 qi ∂S ∂qi , rewrittenwithpreviousrelation n ∑ i=0 piqi=0,defininga2n+ 1-dimensionalextensivitysheet inT,where the thermodynamicmanifoldsM should lie. Considering aninfinitesimalcanonical transformation,generatedbytheHamiltonianh(q0,q1,...,qn,p0,p1,...,pn), . qi= ∂h ∂pi and . pi= ∂h ∂qi , theHamilton’sequationsaregivenbyPoissonbracket: . g={g,h}= n ∑ i=0 ∂g ∂qi ∂h ∂pi − ∂h ∂qi ∂g ∂pi (B5) Theconcavityof theentropyS ( q1,...,qn ) , as functionof theextensivevariables, expresses the stabilityofequilibriumstates. ThispropertyproducesconstraintsonthephysicalmanifoldsM in the 2n+2-dimensionalspace. Itentails theexistenceofametricstructure in then-dimensionalspaceqi relyingonthequadratic form: ds2=−d2S=− n ∑ i,j=1 ∂2S ∂qi∂qj dqidqj (B6) whichdefinesadistancebetweentwoneighboringthermodynamicstates. Asdγi= n ∑ j=1 ∂2S ∂qi∂qj dqj, then:ds2=− n ∑ i=1 dγidqi= 1 p0 n ∑ i=0 dpidqi (B7) The factor1/p0 ensuresgauge invariance. Inacontinuous transformationgeneratedbyh, themetric evolvesaccordingto: d dτ (ds2)= 1 p0 ∂h ∂q0 ds2+ 1 p0 n ∑ i,j=0 ( ∂2h ∂qi∂pj dpidpj− ∂ 2h ∂qi∂qj dqidqj ) (B8) We can observe that this gauge theory of thermodynamics is compatible with Souriau Lie groupTthermodynamics, wherewe have to consider the Souriau vector β = ⎡⎢⎣ γ1... γn ⎤⎥⎦, transformed inanewvector: pi=−p0.γi, p= ⎡⎢⎣ −p0γ1... −p0γn ⎤⎥⎦ =−p0 ·β (B9) AppendixC. Casalis-LetacAffineGroupInvarianceforNaturalExponentialFamilies Thecharacterizationof thenatural exponential familiesofRdwhicharepreservedbyagroup ofaffine transformationshasbeenexaminedbyMurielCasalis inherPh.D. [173]andherdifferent papers [172,174–178].Hermethodhasconsistedof translatingthe invariancepropertyof the family intoapropertyconcerningthemeasureswhichgenerate it, andtocharacterizesuchmeasures. LetEavectorspaceoffinitesize,E∗ itsdual. 〈θ,x〉dualitybracketwith(θ,x)∈E∗×E.μpositive RadonmeasureonE,Laplace transformis: Lμ :E∗→ [0,∞]withθ →Lμ(θ)= E e〈θ,x〉μ(dx) (C1) 109
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics