Page - 111 - in Differential Geometrical Theory of Statistics
Image of the Page - 111 -
Text of the Page - 111 -
Entropy2016,18, 386
theactiona is an inhomogeneous1-cocycle:
∀n>0, let the set of all functions fromGn toE∗, (Gn,E∗) called inhomogenesousn-cochains, thenwe
candefine theoperators dn : (Gn,E∗)→ (Gn+1,E∗) by:
dnF(g1, · · · ,gn+1)= g1.F(g2, · · · ,gn+1)+ n
∑
i=1 (−1)i F(g1,g2, · · · ,gigi+1, · · · ,gn)
+(−1)n+1F(g1,g2, · · · ,gn) (C12)
LetZn(G,E∗)=Ker(dn) ,B(G,E∗)= Im ( dn−1 ) ,withZn inhomogneousn-cocycles, thequotient:
Hn(G,E∗)=Zn(G,E∗)/Bn(G,E∗) (C13)
is theCohomologygroupofGwithvalue inE∗.Wehave:
d0 :E∗→ (G,E∗)
x → (g → g ·x−x) (C14)
Z0={x∈E∗;g ·x= x,∀g∈G} (C15)
d1 : (G,E∗)→ (G2,E∗)
F → d1F , d1F(g1,g2)= g1 ·F(g2)−F(g1g2)+F(g1) (C16)
Z1= {
F∈ (G,E∗) ;F(g1g2)= g1 ·F(g2)+F(g1),∀(g1,g2)∈G2 }
(C17)
B1={F∈ (G,E∗) ;∃x∈E∗,F(g)= g ·x−x} (C18)
WhentheCohomologygroupH1(G,E∗)=0 then:
Z1(G,E∗)=B1(G,E∗) (C19)
Then if F=F(μ) is anexponential family invariantbyG,μverifies:
∀g∈G,g(μ)(dx)= e〈c,x〉−〈c,g−1x〉+b(g)μ(dx) (C20)
∀g∈G,g (
e〈c,x〉μ(dx) )
= eb(g)e〈c,x〉μ(dx)withμ0(dx)= e〈c,x〉μ(dx) (C21)
Forall compactgroup,H1(G,E∗)=0andwecanexpressa:
A :G→GA(E)
g →Ag , Ag(θ)= tg−1θ+a(g) (C22)
∀(g,g′)∈G2,Agg′=AgAg′
A(G)compactsub−groupofGA(E) (C23)
∃fixedpoint⇒∀g∈G,Ag(c)= tg−1c+a(g)= c⇒ a(g)= (
Id− tg−1 )
c (C24)
References
1. Bernard, C. Introduction à l’Étudede laMédecine Expérimentale. Available online: http://classiques.
uqac.ca/classiques/bernard_claude/intro_etude_medecine_exp/intro_medecine_exper.pdf (accessedon
17October2016).
2. Thom,R.Logos etThéoriedesCatastrophes;EditionsPatiño:Genève,Switzerland,1988.
111
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik