Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 111 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 111 - in Differential Geometrical Theory of Statistics

Bild der Seite - 111 -

Bild der Seite - 111 - in Differential Geometrical Theory of Statistics

Text der Seite - 111 -

Entropy2016,18, 386 theactiona is an inhomogeneous1-cocycle: ∀n>0, let the set of all functions fromGn toE∗, (Gn,E∗) called inhomogenesousn-cochains, thenwe candeïŹne theoperators dn : (Gn,E∗)→ (Gn+1,E∗) by: dnF(g1, · · · ,gn+1)= g1.F(g2, · · · ,gn+1)+ n ∑ i=1 (−1)i F(g1,g2, · · · ,gigi+1, · · · ,gn) +(−1)n+1F(g1,g2, · · · ,gn) (C12) LetZn(G,E∗)=Ker(dn) ,B(G,E∗)= Im ( dn−1 ) ,withZn inhomogneousn-cocycles, thequotient: Hn(G,E∗)=Zn(G,E∗)/Bn(G,E∗) (C13) is theCohomologygroupofGwithvalue inE∗.Wehave: d0 :E∗→ (G,E∗) x → (g → g ·x−x) (C14) Z0={x∈E∗;g ·x= x,∀g∈G} (C15) d1 : (G,E∗)→ (G2,E∗) F → d1F , d1F(g1,g2)= g1 ·F(g2)−F(g1g2)+F(g1) (C16) Z1= { F∈ (G,E∗) ;F(g1g2)= g1 ·F(g2)+F(g1),∀(g1,g2)∈G2 } (C17) B1={F∈ (G,E∗) ;∃x∈E∗,F(g)= g ·x−x} (C18) WhentheCohomologygroupH1(G,E∗)=0 then: Z1(G,E∗)=B1(G,E∗) (C19) Then if F=F(ÎŒ) is anexponential family invariantbyG,ÎŒveriïŹes: ∀g∈G,g(ÎŒ)(dx)= e〈c,x〉−〈c,g−1x〉+b(g)ÎŒ(dx) (C20) ∀g∈G,g ( e〈c,xă€‰ÎŒ(dx) ) = eb(g)e〈c,xă€‰ÎŒ(dx)withÎŒ0(dx)= e〈c,xă€‰ÎŒ(dx) (C21) Forall compactgroup,H1(G,E∗)=0andwecanexpressa: A :G→GA(E) g →Ag , Ag(Ξ)= tg−1Ξ+a(g) (C22) ∀(g,gâ€Č)∈G2,Aggâ€Č=AgAgâ€Č A(G)compactsub−groupofGA(E) (C23) âˆƒïŹxedpoint⇒∀g∈G,Ag(c)= tg−1c+a(g)= c⇒ a(g)= ( Id− tg−1 ) c (C24) References 1. Bernard, C. Introduction Ă  l’Étudede laMĂ©decine ExpĂ©rimentale. Available online: http://classiques. uqac.ca/classiques/bernard_claude/intro_etude_medecine_exp/intro_medecine_exper.pdf (accessedon 17October2016). 2. Thom,R.Logos etThĂ©oriedesCatastrophes;EditionsPatiño:GenĂšve,Switzerland,1988. 111
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics