Seite - 111 - in Differential Geometrical Theory of Statistics
Bild der Seite - 111 -
Text der Seite - 111 -
Entropy2016,18, 386
theactiona is an inhomogeneous1-cocycle:
ân>0, let the set of all functions fromGn toEâ, (Gn,Eâ) called inhomogenesousn-cochains, thenwe
candeïŹne theoperators dn : (Gn,Eâ)â (Gn+1,Eâ) by:
dnF(g1, · · · ,gn+1)= g1.F(g2, · · · ,gn+1)+ n
â
i=1 (â1)i F(g1,g2, · · · ,gigi+1, · · · ,gn)
+(â1)n+1F(g1,g2, · · · ,gn) (C12)
LetZn(G,Eâ)=Ker(dn) ,B(G,Eâ)= Im ( dnâ1 ) ,withZn inhomogneousn-cocycles, thequotient:
Hn(G,Eâ)=Zn(G,Eâ)/Bn(G,Eâ) (C13)
is theCohomologygroupofGwithvalue inEâ.Wehave:
d0 :Eââ (G,Eâ)
x â (g â g ·xâx) (C14)
Z0={xâEâ;g ·x= x,âgâG} (C15)
d1 : (G,Eâ)â (G2,Eâ)
F â d1F , d1F(g1,g2)= g1 ·F(g2)âF(g1g2)+F(g1) (C16)
Z1= {
Fâ (G,Eâ) ;F(g1g2)= g1 ·F(g2)+F(g1),â(g1,g2)âG2 }
(C17)
B1={Fâ (G,Eâ) ;âxâEâ,F(g)= g ·xâx} (C18)
WhentheCohomologygroupH1(G,Eâ)=0 then:
Z1(G,Eâ)=B1(G,Eâ) (C19)
Then if F=F(ÎŒ) is anexponential family invariantbyG,ÎŒveriïŹes:
âgâG,g(ÎŒ)(dx)= eăc,xăâăc,gâ1xă+b(g)ÎŒ(dx) (C20)
âgâG,g (
eăc,xăÎŒ(dx) )
= eb(g)eăc,xăÎŒ(dx)withÎŒ0(dx)= eăc,xăÎŒ(dx) (C21)
Forall compactgroup,H1(G,Eâ)=0andwecanexpressa:
A :GâGA(E)
g âAg , Ag(Ξ)= tgâ1Ξ+a(g) (C22)
â(g,gâČ)âG2,AggâČ=AgAgâČ
A(G)compactsubâgroupofGA(E) (C23)
âïŹxedpointââgâG,Ag(c)= tgâ1c+a(g)= câ a(g)= (
Idâ tgâ1 )
c (C24)
References
1. Bernard, C. Introduction Ă lâĂtudede laMĂ©decine ExpĂ©rimentale. Available online: http://classiques.
uqac.ca/classiques/bernard_claude/intro_etude_medecine_exp/intro_medecine_exper.pdf (accessedon
17October2016).
2. Thom,R.Logos etThéoriedesCatastrophes;EditionsPatiño:GenÚve,Switzerland,1988.
111
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik