Page - 118 - in Differential Geometrical Theory of Statistics
Image of the Page - 118 -
Text of the Page - 118 -
Entropy2016,18, 386
180. Letac,G.Lectures onNaturalExponential Families andTheirVarianceFunctions,Volume50ofMonograïŹasde
Matematica (MathematicalMonographs); InstitutodeMatematicaPura eAplicada (IMPA):Riode Janeiro,
Brazil, 1992.
181. Letac,G.Les famillesexponentiellesstatistiques invariantespar lesgroupesduCĂŽneetduparaboloĂŻdede
revolution. In Journal ofAppliedProbability,Volume31,Studies inAppliedProbability;Takacs,L.,Galambos, J.,
Gani, J.,Eds.;AppliedProbabilityTrust: ShefïŹeld,UK,1994;pp.71â95.
182. Barndorff-Nielsen,O.E.Differential geometryandstatistics: Somemathematical aspects. Indian J.Math.
1987,29, 335â350.
183. Barndorff-Nielsen,O.E.; Jupp,P.E.Yokesandsymplectic structures. J.Stat. Plan Inference1997,63, 133â146.
[CrossRef]
184. Barndorff-Nielsen,O.E.; Jupp,P.E.Statistics,yokesandsymplecticgeometry.Annalesde laFacultédes sciences
deToulouse:MathĂ©matiques1997,6, 389â427. [CrossRef]
185. Barndorff-Nielsen,O.E. Information andExponential Families in Stattistical Theory;Wiley: NewYork,NY,
USA,2014.
186. Jespersen,N.C.B.Onthestructureof transformationmodels.Ann. Stat. 1999,17, 195â208.
187. Skovgaard,L.T.ARiemanniangeometryof themultivariatenormalmodel.Scand. J.Stat. 1984,11, 211â223.
188. Han,M.;Park,F.C.DTIsegmentationandïŹber trackingusingmetricsonmultivariatenormaldistributions.
J.Math. ImagingVis. 2014,49, 317â334. [CrossRef]
189. Imai,T.;Takaesu,A.;Wakayama,M.Remarksongeodesics formultivariatenormalmodels. J.Math. Ind.
2011,3, 125â130.
190. Inoue,H.Grouptheoretical studyongeodesics for theellipticalmodels. InGeometricScienceof Information
Proceedings;LectureNotes inComputerScience;Springer: Berlin/Heidelberg,Germany,2015;Volume9389,
pp.605â614.
191. Pilté,M.;Barbaresco,F.Trackingqualitymonitoringbasedoninformationgeometryandgeodesic shooting.
InProceedingsof the17th InternationalRadarSymposium(IRS),Krakow,Poland,10â12May2016;pp.1â6.
192. Eriksen,P.S. (k, 1)Exponential transformationmodels.Scand. J.Stat. 1984,11, 129â145.
193. Eriksen,P.GeodesicsConnectedwith theFisherMetric on theMultivariateNormalManifold; TechnicalReport
86-13; InstituteofElectronicSystems,AalborgUniversity:Aalborg,Denmark,1986.
194. Eriksen,P.S.GeodesicsconnectedwiththeFishermetriconthemultivariatenormalmanifold. InProceedings
of theGSTWorkshop,Lancaster,UK,28â31October1987.
195. Feragen,A.; Lauze,F.;Hauberg, S.Geodesic exponential kernels:Whencurvatureand linearity conïŹict.
InProceedingsof the IEEEConferenceonComputerVisionandPatternRecognition(CVPR),8â10June2015;
pp.3032â3042.
196. Besse,A.L.EinsteinManifolds,ErgebnissederMathematikund ihreGrenzgebiete; Springer: Berlin/Heidelberg,
Germany,1986.
197. Tumpach,A.B. InïŹnite-dimensionalhyperkĂ€hlermanifoldsassociatedwithHermitian-symmetric afïŹne
coadjointorbits.Ann. Inst. Fourier2009,59, 167â197. [CrossRef]
198. Tumpach, A.B. ClassiïŹcation of inïŹnite-dimensional Hermitian-symmetric afïŹne coadjoint orbits.
ForumMath. 2009,21, 375â393. [CrossRef]
199. Tumpach,A.B. VariĂ©tĂ©s KĂ€hlĂ©riennes etHyperkĂ€hlĂ©riennes deDimension InïŹnie. Ph.D. Thesis, Ecole
Polytechnique,Paris,France,26 July2005.
200. Neeb, K.-H. InïŹnite-dimensional groups and their representations. In Lie Theory; BirkhĂ€user: Basel,
Switzerland,2004.
201. Gauduchon,P.CalabiâsExtremalKĂ€hlerMetrics:AnElementary Introduction.Availableonline: germanio.
math.uniïŹ.it/wp-content/uploads/2015/03/dercalabi.pdf (accessedon27October2016).
202. Biquard,O.;Gauduchon,P.HyperkÀhlerMetricsonCotangentBundlesofHermitianSymmetricSpaces.
Availableonline: https://www.math.ens.fr/~biquard/aarhus96.pdf (accessedon27October2016).
203. Biquard,O.; Gauduchon, P. Lamétrique hyperkÀhlérienne des orbites coadjointes de type symétrique
dâungroupedeLiecomplexesemi-simple.ComptesRendusde lâAcadĂ©miedesSciences1996,323, 1259â1264.
(InFrench)
204. Biquard,O.;Gauduchon,P.GĂ©omĂ©triehyperkĂ€hlĂ©riennedesespaceshermitienssymĂ©triquescomplexiïŹĂ©s.
SĂ©minairedeThĂ©orieSpectrale etGĂ©omĂ©trie1998,16, 127â173. [CrossRef]
118
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik