Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 118 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 118 - in Differential Geometrical Theory of Statistics

Bild der Seite - 118 -

Bild der Seite - 118 - in Differential Geometrical Theory of Statistics

Text der Seite - 118 -

Entropy2016,18, 386 180. Letac,G.Lectures onNaturalExponential Families andTheirVarianceFunctions,Volume50ofMonografiasde Matematica (MathematicalMonographs); InstitutodeMatematicaPura eAplicada (IMPA):Riode Janeiro, Brazil, 1992. 181. Letac,G.Les famillesexponentiellesstatistiques invariantespar lesgroupesduCôneetduparaboloïdede revolution. In Journal ofAppliedProbability,Volume31,Studies inAppliedProbability;Takacs,L.,Galambos, J., Gani, J.,Eds.;AppliedProbabilityTrust: Sheffield,UK,1994;pp.71–95. 182. Barndorff-Nielsen,O.E.Differential geometryandstatistics: Somemathematical aspects. Indian J.Math. 1987,29, 335–350. 183. Barndorff-Nielsen,O.E.; Jupp,P.E.Yokesandsymplectic structures. J.Stat. Plan Inference1997,63, 133–146. [CrossRef] 184. Barndorff-Nielsen,O.E.; Jupp,P.E.Statistics,yokesandsymplecticgeometry.Annalesde laFacultédes sciences deToulouse:Mathématiques1997,6, 389–427. [CrossRef] 185. Barndorff-Nielsen,O.E. Information andExponential Families in Stattistical Theory;Wiley: NewYork,NY, USA,2014. 186. Jespersen,N.C.B.Onthestructureof transformationmodels.Ann. Stat. 1999,17, 195–208. 187. Skovgaard,L.T.ARiemanniangeometryof themultivariatenormalmodel.Scand. J.Stat. 1984,11, 211–223. 188. Han,M.;Park,F.C.DTIsegmentationandfiber trackingusingmetricsonmultivariatenormaldistributions. J.Math. ImagingVis. 2014,49, 317–334. [CrossRef] 189. Imai,T.;Takaesu,A.;Wakayama,M.Remarksongeodesics formultivariatenormalmodels. J.Math. Ind. 2011,3, 125–130. 190. Inoue,H.Grouptheoretical studyongeodesics for theellipticalmodels. InGeometricScienceof Information Proceedings;LectureNotes inComputerScience;Springer: Berlin/Heidelberg,Germany,2015;Volume9389, pp.605–614. 191. Pilté,M.;Barbaresco,F.Trackingqualitymonitoringbasedoninformationgeometryandgeodesic shooting. InProceedingsof the17th InternationalRadarSymposium(IRS),Krakow,Poland,10–12May2016;pp.1–6. 192. Eriksen,P.S. (k, 1)Exponential transformationmodels.Scand. J.Stat. 1984,11, 129–145. 193. Eriksen,P.GeodesicsConnectedwith theFisherMetric on theMultivariateNormalManifold; TechnicalReport 86-13; InstituteofElectronicSystems,AalborgUniversity:Aalborg,Denmark,1986. 194. Eriksen,P.S.GeodesicsconnectedwiththeFishermetriconthemultivariatenormalmanifold. InProceedings of theGSTWorkshop,Lancaster,UK,28–31October1987. 195. Feragen,A.; Lauze,F.;Hauberg, S.Geodesic exponential kernels:Whencurvatureand linearity conflict. InProceedingsof the IEEEConferenceonComputerVisionandPatternRecognition(CVPR),8–10June2015; pp.3032–3042. 196. Besse,A.L.EinsteinManifolds,ErgebnissederMathematikund ihreGrenzgebiete; Springer: Berlin/Heidelberg, Germany,1986. 197. Tumpach,A.B. Infinite-dimensionalhyperkählermanifoldsassociatedwithHermitian-symmetric affine coadjointorbits.Ann. Inst. Fourier2009,59, 167–197. [CrossRef] 198. Tumpach, A.B. Classification of infinite-dimensional Hermitian-symmetric affine coadjoint orbits. ForumMath. 2009,21, 375–393. [CrossRef] 199. Tumpach,A.B. Variétés Kählériennes etHyperkählériennes deDimension Infinie. Ph.D. Thesis, Ecole Polytechnique,Paris,France,26 July2005. 200. Neeb, K.-H. Infinite-dimensional groups and their representations. In Lie Theory; Birkhäuser: Basel, Switzerland,2004. 201. Gauduchon,P.Calabi’sExtremalKählerMetrics:AnElementary Introduction.Availableonline: germanio. math.unifi.it/wp-content/uploads/2015/03/dercalabi.pdf (accessedon27October2016). 202. Biquard,O.;Gauduchon,P.HyperkählerMetricsonCotangentBundlesofHermitianSymmetricSpaces. Availableonline: https://www.math.ens.fr/~biquard/aarhus96.pdf (accessedon27October2016). 203. Biquard,O.; Gauduchon, P. Lamétrique hyperkählérienne des orbites coadjointes de type symétrique d’ungroupedeLiecomplexesemi-simple.ComptesRendusde l’AcadémiedesSciences1996,323, 1259–1264. (InFrench) 204. Biquard,O.;Gauduchon,P.Géométriehyperkählériennedesespaceshermitienssymétriquescomplexifiés. SéminairedeThéorieSpectrale etGéométrie1998,16, 127–173. [CrossRef] 118
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics