Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 124 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 124 - in Differential Geometrical Theory of Statistics

Image of the Page - 124 -

Image of the Page - 124 - in Differential Geometrical Theory of Statistics

Text of the Page - 124 -

Entropy2016,18, 254 Taking intoaccount (4),onefinds that thecoadjoint representation: Ad∗(a) :g∗→g∗ :μ′ →μ=Ad∗(a)μ′ isgivenby: K=K′P−1, L=(PL′+CK′)P−1 . It isnoteworthytoobserve that the transformation law(3)ofmomenta isnothingother thanthe coadjoint representation! However, thismathematical construction isnot relevant forall consideredphysicalapplications andweneedtoextenditbyconsideringamapθ fromG intog∗ andageneralizedtransformation law: μ= a ·μ′=Ad∗(a)μ′+θ(a) , (6) where θ eventually depends on an invariant of the orbit. It is an affine representation ofG in g∗ (becausewewishthemomentumtobeanaffinetensor)provided: ∀a,b∈G, θ(ab)= θ(a)+Ad∗(a)θ(b) (7) Remark1. This action inducesa structureof affine spaceon the set ofmomentumtensors. Letπ :F→Mbe aG-principal bundleof affine frameswith the freeaction (a, f) → f ′= a · f oneachfiber. Thenwecanbuild theassociatedG-principal bundle: πˆ :g∗×F→ (g∗×F)/G : (μ, f) →μ= orb(μ, f) for the free action: (a,(μ, f)) → (μ′, f ′)= a ·(μ, f)=(a ·μ,a · f) where theactionong∗ is (6). Clearly, theorbitμ= orb(μ, f) canbe identified to themomentumG-tensorμof componentsμ in theG-frame f. 4. SymplecticActionandMomentumMap Let (N ,ω)bea symplecticmanifold [3,4,6,10]. ALiegroupG smoothly left actingonN and preserving thesymplectic formω is said tobesymplectic.The interiorproductofavector −→ V anda p-formω isdenoted ι( −→ V )ω. Amapψ :N→g∗ suchthat: ∀η∈N , ∀Z∈g, ι(Z ·η)ω=−d(ψ(η)Z) , is calledamomentummapofG. It is thequantity involved inNoether’s theoremthat claimsψ is constantoneach leafofN . In [3] (Theorem11.17,p. 109,or itsEnglish translation[4]), Souriauproved thereexistsasmoothmapθ fromG intog∗: θ(a)=ψ(a ·η)−Ad∗(a)ψ(η) , (8) which isasymplecticcocycle, that isamapθ :G→gverifyingthe identity (7)andsuchthat (Dθ)(e) is a 2-form. An important result, called theKirillov–Kostant–Souriau theorem, reveals the orbit symplectic structure [3] (Theorem11.34, Pages 116–118). LetGbeaLiegroupandanorbit of the coadjointrepresentationorb(μ)⊂g∗. Thentheorbitorb(μ) isasymplecticmanifold,G isasymplectic groupandanyμ∈g∗ is itsownmomentum. Remark2. Replacingη by a−1 ·η in (8), this formula reads: ψ(η)=Ad∗(a)ψ′(η)+θ(a) , 124
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics