Page - 124 - in Differential Geometrical Theory of Statistics
Image of the Page - 124 -
Text of the Page - 124 -
Entropy2016,18, 254
Taking intoaccount (4),oneďŹnds that thecoadjoint representation:
Adâ(a) :gââgâ :ΟⲠâÎź=Adâ(a)Îźâ˛
isgivenby:
K=Kâ˛Pâ1, L=(PLâ˛+CKâ˛)Pâ1 .
It isnoteworthytoobserve that the transformation law(3)ofmomenta isnothingother thanthe
coadjoint representation!
However, thismathematical construction isnot relevant forall consideredphysicalapplications
andweneedtoextenditbyconsideringamapθ fromG intogâ andageneralizedtransformation law:
Îź= a ¡Οâ˛=Adâ(a)Îźâ˛+θ(a) , (6)
where θ eventually depends on an invariant of the orbit. It is an afďŹne representation ofG in gâ
(becausewewishthemomentumtobeanafďŹnetensor)provided:
âa,bâG, θ(ab)= θ(a)+Adâ(a)θ(b) (7)
Remark1. This action inducesa structureof afďŹne spaceon the set ofmomentumtensors. LetĎ :FâMbe
aG-principal bundleof afďŹne frameswith the freeaction (a, f) â f â˛= a ¡ f oneachďŹber. Thenwecanbuild
theassociatedG-principal bundle:
ĎË :gâĂFâ (gâĂF)/G : (Îź, f) âÎź= orb(Îź, f)
for the free action:
(a,(Îź, f)) â (Îźâ˛, f â˛)= a ¡(Îź, f)=(a ¡Ο,a ¡ f)
where theactionongâ is (6). Clearly, theorbitÎź= orb(Îź, f) canbe identiďŹed to themomentumG-tensorÎźof
componentsÎź in theG-frame f.
4. SymplecticActionandMomentumMap
Let (N ,Ď)bea symplecticmanifold [3,4,6,10]. ALiegroupG smoothly left actingonN and
preserving thesymplectic formĎ is said tobesymplectic.The interiorproductofavector ââ
V anda
p-formĎ isdenoted Κ( ââ
V )Ď. AmapĎ :Nâgâ suchthat:
âΡâN , âZâg, Κ(Z ¡Ρ)Ď=âd(Ď(Ρ)Z) ,
is calledamomentummapofG. It is thequantity involved inNoetherâs theoremthat claimsĎ is
constantoneach leafofN . In [3] (Theorem11.17,p. 109,or itsEnglish translation[4]), Souriauproved
thereexistsasmoothmapθ fromG intogâ:
θ(a)=Ď(a ¡Ρ)âAdâ(a)Ď(Ρ) , (8)
which isasymplecticcocycle, that isamapθ :Gâgverifyingthe identity (7)andsuchthat (Dθ)(e)
is a 2-form. An important result, called theKirillovâKostantâSouriau theorem, reveals the orbit
symplectic structure [3] (Theorem11.34, Pages 116â118). LetGbeaLiegroupandanorbit of the
coadjointrepresentationorb(Îź)âgâ. Thentheorbitorb(Îź) isasymplecticmanifold,G isasymplectic
groupandanyÎźâgâ is itsownmomentum.
Remark2. ReplacingΡ by aâ1 ¡Ρ in (8), this formula reads:
Ď(Ρ)=Adâ(a)Ďâ˛(Ρ)+θ(a) ,
124
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrĂŠdĂŠric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik