Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 124 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 124 - in Differential Geometrical Theory of Statistics

Bild der Seite - 124 -

Bild der Seite - 124 - in Differential Geometrical Theory of Statistics

Text der Seite - 124 -

Entropy2016,18, 254 Taking intoaccount (4),onefinds that thecoadjoint representation: Ad∗(a) :g∗→g∗ :μ′ →μ=Ad∗(a)μ′ isgivenby: K=K′P−1, L=(PL′+CK′)P−1 . It isnoteworthytoobserve that the transformation law(3)ofmomenta isnothingother thanthe coadjoint representation! However, thismathematical construction isnot relevant forall consideredphysicalapplications andweneedtoextenditbyconsideringamapθ fromG intog∗ andageneralizedtransformation law: μ= a ·μ′=Ad∗(a)μ′+θ(a) , (6) where θ eventually depends on an invariant of the orbit. It is an affine representation ofG in g∗ (becausewewishthemomentumtobeanaffinetensor)provided: ∀a,b∈G, θ(ab)= θ(a)+Ad∗(a)θ(b) (7) Remark1. This action inducesa structureof affine spaceon the set ofmomentumtensors. Letπ :F→Mbe aG-principal bundleof affine frameswith the freeaction (a, f) → f ′= a · f oneachfiber. Thenwecanbuild theassociatedG-principal bundle: πˆ :g∗×F→ (g∗×F)/G : (μ, f) →μ= orb(μ, f) for the free action: (a,(μ, f)) → (μ′, f ′)= a ·(μ, f)=(a ·μ,a · f) where theactionong∗ is (6). Clearly, theorbitμ= orb(μ, f) canbe identified to themomentumG-tensorμof componentsμ in theG-frame f. 4. SymplecticActionandMomentumMap Let (N ,ω)bea symplecticmanifold [3,4,6,10]. ALiegroupG smoothly left actingonN and preserving thesymplectic formω is said tobesymplectic.The interiorproductofavector −→ V anda p-formω isdenoted ι( −→ V )ω. Amapψ :N→g∗ suchthat: ∀η∈N , ∀Z∈g, ι(Z ·η)ω=−d(ψ(η)Z) , is calledamomentummapofG. It is thequantity involved inNoether’s theoremthat claimsψ is constantoneach leafofN . In [3] (Theorem11.17,p. 109,or itsEnglish translation[4]), Souriauproved thereexistsasmoothmapθ fromG intog∗: θ(a)=ψ(a ·η)−Ad∗(a)ψ(η) , (8) which isasymplecticcocycle, that isamapθ :G→gverifyingthe identity (7)andsuchthat (Dθ)(e) is a 2-form. An important result, called theKirillov–Kostant–Souriau theorem, reveals the orbit symplectic structure [3] (Theorem11.34, Pages 116–118). LetGbeaLiegroupandanorbit of the coadjointrepresentationorb(μ)⊂g∗. Thentheorbitorb(μ) isasymplecticmanifold,G isasymplectic groupandanyμ∈g∗ is itsownmomentum. Remark2. Replacingη by a−1 ·η in (8), this formula reads: ψ(η)=Ad∗(a)ψ′(η)+θ(a) , 124
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics