Seite - 124 - in Differential Geometrical Theory of Statistics
Bild der Seite - 124 -
Text der Seite - 124 -
Entropy2016,18, 254
Taking intoaccount (4),onefinds that thecoadjoint representation:
Ad∗(a) :g∗→g∗ :μ′ →μ=Ad∗(a)μ′
isgivenby:
K=K′P−1, L=(PL′+CK′)P−1 .
It isnoteworthytoobserve that the transformation law(3)ofmomenta isnothingother thanthe
coadjoint representation!
However, thismathematical construction isnot relevant forall consideredphysicalapplications
andweneedtoextenditbyconsideringamapθ fromG intog∗ andageneralizedtransformation law:
μ= a ·μ′=Ad∗(a)μ′+θ(a) , (6)
where θ eventually depends on an invariant of the orbit. It is an affine representation ofG in g∗
(becausewewishthemomentumtobeanaffinetensor)provided:
∀a,b∈G, θ(ab)= θ(a)+Ad∗(a)θ(b) (7)
Remark1. This action inducesa structureof affine spaceon the set ofmomentumtensors. Letπ :F→Mbe
aG-principal bundleof affine frameswith the freeaction (a, f) → f ′= a · f oneachfiber. Thenwecanbuild
theassociatedG-principal bundle:
πˆ :g∗×F→ (g∗×F)/G : (μ, f) →μ= orb(μ, f)
for the free action:
(a,(μ, f)) → (μ′, f ′)= a ·(μ, f)=(a ·μ,a · f)
where theactionong∗ is (6). Clearly, theorbitμ= orb(μ, f) canbe identified to themomentumG-tensorμof
componentsμ in theG-frame f.
4. SymplecticActionandMomentumMap
Let (N ,ω)bea symplecticmanifold [3,4,6,10]. ALiegroupG smoothly left actingonN and
preserving thesymplectic formω is said tobesymplectic.The interiorproductofavector −→
V anda
p-formω isdenoted ι( −→
V )ω. Amapψ :N→g∗ suchthat:
∀η∈N , ∀Z∈g, ι(Z ·η)ω=−d(ψ(η)Z) ,
is calledamomentummapofG. It is thequantity involved inNoether’s theoremthat claimsψ is
constantoneach leafofN . In [3] (Theorem11.17,p. 109,or itsEnglish translation[4]), Souriauproved
thereexistsasmoothmapθ fromG intog∗:
θ(a)=ψ(a ·η)−Ad∗(a)ψ(η) , (8)
which isasymplecticcocycle, that isamapθ :G→gverifyingthe identity (7)andsuchthat (Dθ)(e)
is a 2-form. An important result, called theKirillov–Kostant–Souriau theorem, reveals the orbit
symplectic structure [3] (Theorem11.34, Pages 116–118). LetGbeaLiegroupandanorbit of the
coadjointrepresentationorb(μ)⊂g∗. Thentheorbitorb(μ) isasymplecticmanifold,G isasymplectic
groupandanyμ∈g∗ is itsownmomentum.
Remark2. Replacingη by a−1 ·η in (8), this formula reads:
ψ(η)=Ad∗(a)ψ′(η)+θ(a) ,
124
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik