Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 126 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 126 - in Differential Geometrical Theory of Statistics

Image of the Page - 126 -

Image of the Page - 126 - in Differential Geometrical Theory of Statistics

Text of the Page - 126 -

Entropy2016,18, 254 Galileo’s group GAL is a subgroup of the affine group Af f(4), collecting the Galilean transformations, that is theaffinetransformationsdX′ → dX=PdX′+CofR4 suchthat: C= ( Ļ„0 k ) , P= ( 1 0 u R ) , (12) whereu∈R3 isaGalileanboost,R∈SO(3) isa rotation,k∈R3 isaspatial translationandĻ„0∈R is aclockchange.Hence,Galileo’sgroupisaLiegroupofdimension10. TheGAL-tensorswillalsobe calledGalilean tensors. M is thespace-timeequippedwithasymmetricGAL-connectionāˆ‡ representing thegravitation, thematterand its evolution is characterizedbya linebundleĻ€0 :M →M0. The trajectoryof the particleX0∈M0 is thecorrespondingfiberĻ€āˆ’10 (X0). In local charts,X0 is representedby s′ ∈R3 and itspositionxat time t isgivenbyamap: x=Ļ•(t,s′) . (13) The4-velocity: āˆ’ā†’ U = āˆ’ā†’ dX dt , is the tangentvector to thefiberparameterizedbythe time. Ina local chart, it is representedby: U= ( 1 v ) , (14) wherev is theusualvelocity.Conversely,Ļ•canbeobtainedas theflowof the4-velocity. βbeing thereciprocal temperature, that is1/kBTwhere kB isBoltzmann’sconstantandT the absolute temperature, therearefivebasic tensorfieldsdefinedonthespace-timeM: • the4-fluxofmassāˆ’ā†’N = Ļāˆ’ā†’U whereρ is thedensity, • the4-fluxofentropyāˆ’ā†’S = ρsāˆ’ā†’U = sāˆ’ā†’N where s is thespecificentropy, • Planck’s temperaturevectorāˆ’ā†’W= Ī²āˆ’ā†’U , • itsgradient f=āˆ‡āˆ’ā†’W calledfrictiontensor, • themomentumtensorofacontinuumT, a linearmapfromTXM into itself. In localcharts, theyarerespectivelyrepresentedbytwo4-columnsN,W andtwo4Ɨ4matrices f andT. Thenweprovedin[14] the followingresult characterizingthereversibleprocesses: Theorem1. IfPlanck’spotentialζ smoothlydependsons′,WandF= āˆ‚x/āˆ‚s′ throughrightCauchystrains: C=FTF , (15) then: T=UĪ + ( 0 0 āˆ’Ļƒv σ ) (16) with Ī =āˆ’Ļ āˆ‚Ī¶ āˆ‚W , σ=āˆ’2ρ β F āˆ‚Ī¶ āˆ‚C F T , (17) represents themomentumtensorof the continuumand is such that: (āˆ‡Ī¶)N=āˆ’Tr (T f) , 126
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrƩdƩric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics