Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 126 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 126 - in Differential Geometrical Theory of Statistics

Bild der Seite - 126 -

Bild der Seite - 126 - in Differential Geometrical Theory of Statistics

Text der Seite - 126 -

Entropy2016,18, 254 Galileo’s group GAL is a subgroup of the afïŹne group Af f(4), collecting the Galilean transformations, that is theafïŹnetransformationsdXâ€Č → dX=PdXâ€Č+CofR4 suchthat: C= ( τ0 k ) , P= ( 1 0 u R ) , (12) whereu∈R3 isaGalileanboost,R∈SO(3) isa rotation,k∈R3 isaspatial translationandτ0∈R is aclockchange.Hence,Galileo’sgroupisaLiegroupofdimension10. TheGAL-tensorswillalsobe calledGalilean tensors. M is thespace-timeequippedwithasymmetricGAL-connection∇ representing thegravitation, thematterand its evolution is characterizedbya linebundleπ0 :M →M0. The trajectoryof the particleX0∈M0 is thecorrespondingïŹberπ−10 (X0). In local charts,X0 is representedby sâ€Č ∈R3 and itspositionxat time t isgivenbyamap: x=ϕ(t,sâ€Č) . (13) The4-velocity: −→ U = −→ dX dt , is the tangentvector to theïŹberparameterizedbythe time. Ina local chart, it is representedby: U= ( 1 v ) , (14) wherev is theusualvelocity.Conversely,ϕcanbeobtainedas theïŹ‚owof the4-velocity. ÎČbeing thereciprocal temperature, that is1/kBTwhere kB isBoltzmann’sconstantandT the absolute temperature, thereareïŹvebasic tensorïŹeldsdeïŹnedonthespace-timeM: ‱ the4-ïŹ‚uxofmass−→N = ρ−→U whereρ is thedensity, ‱ the4-ïŹ‚uxofentropy−→S = ρs−→U = s−→N where s is thespeciïŹcentropy, ‱ Planck’s temperaturevector−→W= ÎČ−→U , ‱ itsgradient f=∇−→W calledfrictiontensor, ‱ themomentumtensorofacontinuumT, a linearmapfromTXM into itself. In localcharts, theyarerespectivelyrepresentedbytwo4-columnsN,W andtwo4×4matrices f andT. Thenweprovedin[14] the followingresult characterizingthereversibleprocesses: Theorem1. IfPlanck’spotentialζ smoothlydependsonsâ€Č,WandF= ∂x/∂sâ€Č throughrightCauchystrains: C=FTF , (15) then: T=UΠ+ ( 0 0 −σv σ ) (16) with Π=−ρ ∂ζ ∂W , σ=−2ρ ÎČ F ∂ζ ∂C F T , (17) represents themomentumtensorof the continuumand is such that: (∇ζ)N=−Tr (T f) , 126
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics