Seite - 126 - in Differential Geometrical Theory of Statistics
Bild der Seite - 126 -
Text der Seite - 126 -
Entropy2016,18, 254
Galileoâs group GAL is a subgroup of the afïŹne group Af f(4), collecting the Galilean
transformations, that is theafïŹnetransformationsdXâČ â dX=PdXâČ+CofR4 suchthat:
C= (
Ï0
k )
, P= (
1 0
u R )
, (12)
whereuâR3 isaGalileanboost,RâSO(3) isa rotation,kâR3 isaspatial translationandÏ0âR is
aclockchange.Hence,GalileoâsgroupisaLiegroupofdimension10. TheGAL-tensorswillalsobe
calledGalilean tensors.
M is thespace-timeequippedwithasymmetricGAL-connectionâ representing thegravitation,
thematterand its evolution is characterizedbya linebundleÏ0 :M âM0. The trajectoryof the
particleX0âM0 is thecorrespondingïŹberÏâ10 (X0). In local charts,X0 is representedby sâČ âR3 and
itspositionxat time t isgivenbyamap:
x=Ï(t,sâČ) . (13)
The4-velocity:
ââ
U = ââ
dX
dt ,
is the tangentvector to theïŹberparameterizedbythe time. Ina local chart, it is representedby:
U= (
1
v )
, (14)
wherev is theusualvelocity.Conversely,Ïcanbeobtainedas theïŹowof the4-velocity.
ÎČbeing thereciprocal temperature, that is1/kBTwhere kB isBoltzmannâsconstantandT the
absolute temperature, thereareïŹvebasic tensorïŹeldsdeïŹnedonthespace-timeM:
âą the4-ïŹuxofmassââN = ÏââU whereÏ is thedensity,
âą the4-ïŹuxofentropyââS = ÏsââU = sââN where s is thespeciïŹcentropy,
âą Planckâs temperaturevectorââW= ÎČââU ,
âą itsgradient f=âââW calledfrictiontensor,
âą themomentumtensorofacontinuumT, a linearmapfromTXM into itself.
In localcharts, theyarerespectivelyrepresentedbytwo4-columnsN,W andtwo4Ă4matrices f
andT. Thenweprovedin[14] the followingresult characterizingthereversibleprocesses:
Theorem1. IfPlanckâspotentialζ smoothlydependsonsâČ,WandF= âx/âsâČ throughrightCauchystrains:
C=FTF , (15)
then:
T=UÎ + (
0 0
âÏv Ï )
(16)
with
Î =âÏ âζ
âW , Ï=â2Ï
ÎČ F âζ
âC F T , (17)
represents themomentumtensorof the continuumand is such that:
(âζ)N=âTr (T f) ,
126
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik