Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 128 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 128 - in Differential Geometrical Theory of Statistics

Image of the Page - 128 -

Image of the Page - 128 - in Differential Geometrical Theory of Statistics

Text of the Page - 128 -

Entropy2016,18, 254 7. Planck’sPotentialofaContinuum Now, letusreveal the linkbetweenthepreviousrelativistic thermodynamicsofcontinuaandLie groupstatisticalmechanics in theclassicalGalileancontextand, tosimplify, inabsenceofgravitation. Inotherwords,howtodeduceT fromM andζ fromz?Wework insevensteps: • Step1: defining theorbit.Tobeginwith,weconsider themomentumasanGalileantensor, i.e., its componentsarmodifiedonlybytheactionofGalileantransformations. Inorder tocalculate the integral (10), theorbit isparameterizedthanks toamomentummap.Calculating the infinitesimal generatorsZ=(dC,dP)bydifferentiationof (12): dC= ( dτ0 dk ) , dP= ( 0 0 du j(d ) ) , where j(d )v= d ×v, thedualpairing(4) reads: μZ= l ·d −q ·du+p ·dk−edτ0 . (26) Themostgeneral formof theaction(6) itemizes in: p=Rp′+mu, q=R(q′−τ0p′)+m(k−τ0u) , (27) l=Rl′−u×(Rq′)+k×(Rp′)+mk×u , (28) e= e′+u ·(Rp′)+ 1 2 m‖u‖2 . (29) where theorbit invariantmoccuring in thesymplecticcocycleθ isphysically interpretedas the particlemass. In [3] (Theorem11.34,p. 151), thecocycleofGalileo’sgroup isderived froman explicit formof thesymplectic form.Analternativemethodtoobtain itusingonly theLiegroup structure isproposedin[2] (Theorem16.3,p. 329andTheorem17.4,p. 374). Taking intoaccount (3), the transformation law(6)of theGalileanmomentumtensorμ reads: K=K′P−1+Km(C,P), L=(PL′+CK′)P−1+Lm(C,P) , (30) whereKm andLm are thecomponentsofθ. Inparticular,onehas: Km(C,P)=m ( −1 2 ‖u‖2,uT ) . (31) • Step2: representing theorbit byequations.Toobtain them,wehavetodeterminea functionalbasis. Thefirst step is to calculate their number. Westart determining the isotropygroupofμ. The analysiswillberestrictedtomassiveparticles:m =0. Thecomponents p,q, l,ebeinggiven,we havetosolve the followingsystem: p=Rp+mu , (32) q=Rq−τ0(Rp+mu)+mk , (33) l=Rl−u×(Rq)+k×(Rp)+mk×u , (34) u ·(Rp)+ 1 2 m‖u‖2=0 , (35) withrespect toτ0,k,R,u. Owingto (32), theboostucanbeexpressedwithrespect to therotation Rby: u= 1 m (p−Rp) , (36) 128
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics