Seite - 128 - in Differential Geometrical Theory of Statistics
Bild der Seite - 128 -
Text der Seite - 128 -
Entropy2016,18, 254
7. Planck’sPotentialofaContinuum
Now, letusreveal the linkbetweenthepreviousrelativistic thermodynamicsofcontinuaandLie
groupstatisticalmechanics in theclassicalGalileancontextand, tosimplify, inabsenceofgravitation.
Inotherwords,howtodeduceT fromM andζ fromz?Wework insevensteps:
• Step1: defining theorbit.Tobeginwith,weconsider themomentumasanGalileantensor, i.e., its
componentsarmodifiedonlybytheactionofGalileantransformations. Inorder tocalculate the
integral (10), theorbit isparameterizedthanks toamomentummap.Calculating the infinitesimal
generatorsZ=(dC,dP)bydifferentiationof (12):
dC= (
dτ0
dk )
, dP= (
0 0
du j(d ) )
,
where j(d )v= d ×v, thedualpairing(4) reads:
μZ= l ·d −q ·du+p ·dk−edτ0 . (26)
Themostgeneral formof theaction(6) itemizes in:
p=Rp′+mu, q=R(q′−τ0p′)+m(k−τ0u) , (27)
l=Rl′−u×(Rq′)+k×(Rp′)+mk×u , (28)
e= e′+u ·(Rp′)+ 1
2 m‖u‖2 . (29)
where theorbit invariantmoccuring in thesymplecticcocycleθ isphysically interpretedas the
particlemass. In [3] (Theorem11.34,p. 151), thecocycleofGalileo’sgroup isderived froman
explicit formof thesymplectic form.Analternativemethodtoobtain itusingonly theLiegroup
structure isproposedin[2] (Theorem16.3,p. 329andTheorem17.4,p. 374).
Taking intoaccount (3), the transformation law(6)of theGalileanmomentumtensorμ reads:
K=K′P−1+Km(C,P), L=(PL′+CK′)P−1+Lm(C,P) , (30)
whereKm andLm are thecomponentsofθ. Inparticular,onehas:
Km(C,P)=m (
−1
2 ‖u‖2,uT )
. (31)
• Step2: representing theorbit byequations.Toobtain them,wehavetodeterminea functionalbasis.
Thefirst step is to calculate their number. Westart determining the isotropygroupofμ. The
analysiswillberestrictedtomassiveparticles:m =0. Thecomponents p,q, l,ebeinggiven,we
havetosolve the followingsystem:
p=Rp+mu , (32)
q=Rq−τ0(Rp+mu)+mk , (33)
l=Rl−u×(Rq)+k×(Rp)+mk×u , (34)
u ·(Rp)+ 1
2 m‖u‖2=0 , (35)
withrespect toτ0,k,R,u. Owingto (32), theboostucanbeexpressedwithrespect to therotation
Rby:
u= 1
m (p−Rp) , (36)
128
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik