Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 128 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 128 - in Differential Geometrical Theory of Statistics

Bild der Seite - 128 -

Bild der Seite - 128 - in Differential Geometrical Theory of Statistics

Text der Seite - 128 -

Entropy2016,18, 254 7. Planck’sPotentialofaContinuum Now, letusreveal the linkbetweenthepreviousrelativistic thermodynamicsofcontinuaandLie groupstatisticalmechanics in theclassicalGalileancontextand, tosimplify, inabsenceofgravitation. Inotherwords,howtodeduceT fromM andζ fromz?Wework insevensteps: • Step1: defining theorbit.Tobeginwith,weconsider themomentumasanGalileantensor, i.e., its componentsarmodifiedonlybytheactionofGalileantransformations. Inorder tocalculate the integral (10), theorbit isparameterizedthanks toamomentummap.Calculating the infinitesimal generatorsZ=(dC,dP)bydifferentiationof (12): dC= ( dτ0 dk ) , dP= ( 0 0 du j(d ) ) , where j(d )v= d ×v, thedualpairing(4) reads: μZ= l ·d −q ·du+p ·dk−edτ0 . (26) Themostgeneral formof theaction(6) itemizes in: p=Rp′+mu, q=R(q′−τ0p′)+m(k−τ0u) , (27) l=Rl′−u×(Rq′)+k×(Rp′)+mk×u , (28) e= e′+u ·(Rp′)+ 1 2 m‖u‖2 . (29) where theorbit invariantmoccuring in thesymplecticcocycleθ isphysically interpretedas the particlemass. In [3] (Theorem11.34,p. 151), thecocycleofGalileo’sgroup isderived froman explicit formof thesymplectic form.Analternativemethodtoobtain itusingonly theLiegroup structure isproposedin[2] (Theorem16.3,p. 329andTheorem17.4,p. 374). Taking intoaccount (3), the transformation law(6)of theGalileanmomentumtensorμ reads: K=K′P−1+Km(C,P), L=(PL′+CK′)P−1+Lm(C,P) , (30) whereKm andLm are thecomponentsofθ. Inparticular,onehas: Km(C,P)=m ( −1 2 ‖u‖2,uT ) . (31) • Step2: representing theorbit byequations.Toobtain them,wehavetodeterminea functionalbasis. Thefirst step is to calculate their number. Westart determining the isotropygroupofμ. The analysiswillberestrictedtomassiveparticles:m =0. Thecomponents p,q, l,ebeinggiven,we havetosolve the followingsystem: p=Rp+mu , (32) q=Rq−τ0(Rp+mu)+mk , (33) l=Rl−u×(Rq)+k×(Rp)+mk×u , (34) u ·(Rp)+ 1 2 m‖u‖2=0 , (35) withrespect toτ0,k,R,u. Owingto (32), theboostucanbeexpressedwithrespect to therotation Rby: u= 1 m (p−Rp) , (36) 128
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics