Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 129 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 129 - in Differential Geometrical Theory of Statistics

Image of the Page - 129 -

Image of the Page - 129 - in Differential Geometrical Theory of Statistics

Text of the Page - 129 -

Entropy2016,18, 254 thatallowsustosatisfyautomatically (35).Next,owingto (32),Equation(33)canbesimplified as follows: q=Rq−τ0p+mk , thatallowstodetermine thespatial translationkwithrespect toRandtheclockchangeτ0: k= 1 m (q−Rq+τ0p). (37) Finally,becauseof (32),Equation(34) is simplifiedas follows: l=Rl−u×(Rq)+k×p . Substituting(37) into the last relationgives: l=Rl−u×(Rq)+ 1 m q×p− 1 m (Rq)×p . Owingto (32)andthedefinitionof thespinangularmomentum l0 l0= l−q×p/m , leads to: l0=Rl0 . (38) Thesequantitybeinggiven,wehave todetermine therotationssatisfying thepreviousrelation. It turnsout that twocasesmustbeconsidered. – Genericorbits :massiveparticlewithspinorrigidbody. If l0doesnotvanish, thesolutionsof (38) are therotationsofanarbitraryangleϑabout theaxis l0.Weknowby(36)and(37) thatuand karedeterminedinauniquemannerwithrespect toRandτ0. The isotropygroupofμcan beparameterisedbyϑandτ0. It isaLiegroupofdimension2. Thedimensionof theorbitof μ is10−2=8. Themaximumnumberof independent invariant functions is10−8=2.A possible functionalbasis is composedof: s0=‖ l0 ‖ , (39) e0= e− 12m ‖ p‖ 2 , (40) ofwhichthevaluesareconstantontheorbitwhichrepresentsamassiveparticlewithspinor arigidbody(seenfromalongwayoff). – Singularorbits : spinlessmassiveparticle. Intheparticularcase l0=0,all therotationsofSO(3) satisfy (38), then the isotropygroup isofdimension4. Bysimilar reasoning to thecaseof nonvanishing l0,weconcludethatdimensionof theorbit is6andthenumberof invariant functions is4.Apossible functionalbasis iscomposedof e0 andthe threenull components of l0. For theorbitswithm=0, thereader is referredto [6] (pp. 440,441). Tophysically interpret thecomponentsof themomentum, let consideracoordinatesystemX′ inwhichaparticle is at rest andcharacterizedby the components p′= 0, q′= 0, l′= l0 and e′= e0 of themomentumtensor. LetusconsideranothercoordinatesystemX=PX′+Cwitha Galileanboostvandatranslationof theoriginatk= x0 (henceτ0=0andR=1R3),providing the trajectoryequation: x= x0+vt , (41) 129
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics