Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 129 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 129 - in Differential Geometrical Theory of Statistics

Bild der Seite - 129 -

Bild der Seite - 129 - in Differential Geometrical Theory of Statistics

Text der Seite - 129 -

Entropy2016,18, 254 thatallowsustosatisfyautomatically (35).Next,owingto (32),Equation(33)canbesimplified as follows: q=Rq−τ0p+mk , thatallowstodetermine thespatial translationkwithrespect toRandtheclockchangeτ0: k= 1 m (q−Rq+τ0p). (37) Finally,becauseof (32),Equation(34) is simplifiedas follows: l=Rl−u×(Rq)+k×p . Substituting(37) into the last relationgives: l=Rl−u×(Rq)+ 1 m q×p− 1 m (Rq)×p . Owingto (32)andthedefinitionof thespinangularmomentum l0 l0= l−q×p/m , leads to: l0=Rl0 . (38) Thesequantitybeinggiven,wehave todetermine therotationssatisfying thepreviousrelation. It turnsout that twocasesmustbeconsidered. – Genericorbits :massiveparticlewithspinorrigidbody. If l0doesnotvanish, thesolutionsof (38) are therotationsofanarbitraryangleϑabout theaxis l0.Weknowby(36)and(37) thatuand karedeterminedinauniquemannerwithrespect toRandτ0. The isotropygroupofμcan beparameterisedbyϑandτ0. It isaLiegroupofdimension2. Thedimensionof theorbitof μ is10−2=8. Themaximumnumberof independent invariant functions is10−8=2.A possible functionalbasis is composedof: s0=‖ l0 ‖ , (39) e0= e− 12m ‖ p‖ 2 , (40) ofwhichthevaluesareconstantontheorbitwhichrepresentsamassiveparticlewithspinor arigidbody(seenfromalongwayoff). – Singularorbits : spinlessmassiveparticle. Intheparticularcase l0=0,all therotationsofSO(3) satisfy (38), then the isotropygroup isofdimension4. Bysimilar reasoning to thecaseof nonvanishing l0,weconcludethatdimensionof theorbit is6andthenumberof invariant functions is4.Apossible functionalbasis iscomposedof e0 andthe threenull components of l0. For theorbitswithm=0, thereader is referredto [6] (pp. 440,441). Tophysically interpret thecomponentsof themomentum, let consideracoordinatesystemX′ inwhichaparticle is at rest andcharacterizedby the components p′= 0, q′= 0, l′= l0 and e′= e0 of themomentumtensor. LetusconsideranothercoordinatesystemX=PX′+Cwitha Galileanboostvandatranslationof theoriginatk= x0 (henceτ0=0andR=1R3),providing the trajectoryequation: x= x0+vt , (41) 129
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics