Seite - 129 - in Differential Geometrical Theory of Statistics
Bild der Seite - 129 -
Text der Seite - 129 -
Entropy2016,18, 254
thatallowsustosatisfyautomatically (35).Next,owingto (32),Equation(33)canbesimplified
as follows:
q=Rq−τ0p+mk ,
thatallowstodetermine thespatial translationkwithrespect toRandtheclockchangeτ0:
k= 1
m (q−Rq+τ0p). (37)
Finally,becauseof (32),Equation(34) is simplifiedas follows:
l=Rl−u×(Rq)+k×p .
Substituting(37) into the last relationgives:
l=Rl−u×(Rq)+ 1
m q×p− 1
m (Rq)×p .
Owingto (32)andthedefinitionof thespinangularmomentum l0
l0= l−q×p/m ,
leads to:
l0=Rl0 . (38)
Thesequantitybeinggiven,wehave todetermine therotationssatisfying thepreviousrelation. It
turnsout that twocasesmustbeconsidered.
– Genericorbits :massiveparticlewithspinorrigidbody. If l0doesnotvanish, thesolutionsof (38)
are therotationsofanarbitraryangleϑabout theaxis l0.Weknowby(36)and(37) thatuand
karedeterminedinauniquemannerwithrespect toRandτ0. The isotropygroupofμcan
beparameterisedbyϑandτ0. It isaLiegroupofdimension2. Thedimensionof theorbitof
μ is10−2=8. Themaximumnumberof independent invariant functions is10−8=2.A
possible functionalbasis is composedof:
s0=‖ l0 ‖ , (39)
e0= e− 12m ‖ p‖ 2 , (40)
ofwhichthevaluesareconstantontheorbitwhichrepresentsamassiveparticlewithspinor
arigidbody(seenfromalongwayoff).
– Singularorbits : spinlessmassiveparticle. Intheparticularcase l0=0,all therotationsofSO(3)
satisfy (38), then the isotropygroup isofdimension4. Bysimilar reasoning to thecaseof
nonvanishing l0,weconcludethatdimensionof theorbit is6andthenumberof invariant
functions is4.Apossible functionalbasis iscomposedof e0 andthe threenull components
of l0.
For theorbitswithm=0, thereader is referredto [6] (pp. 440,441).
Tophysically interpret thecomponentsof themomentum, let consideracoordinatesystemX′
inwhichaparticle is at rest andcharacterizedby the components p′= 0, q′= 0, l′= l0 and
e′= e0 of themomentumtensor. LetusconsideranothercoordinatesystemX=PX′+Cwitha
Galileanboostvandatranslationof theoriginatk= x0 (henceτ0=0andR=1R3),providing
the trajectoryequation:
x= x0+vt , (41)
129
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik