Page - 130 - in Differential Geometrical Theory of Statistics
Image of the Page - 130 -
Text of the Page - 130 -
Entropy2016,18, 254
of theparticlemoving inuniformstraightmotion at velocity v. Owing (27) and (28),we can
determine thenewcomponentsof the torsor inX:
p=mv, q=mx0, l= l0+qĆv, e= e0+m2 ā vā 2 , (42)
The third relation of (42) is the classical transport law of the angularmomentum. In fact, it is a
particularcaseof thegeneral transformation laws(28)whenconsideringonlyaGalileanboost.
The transformation lawreveals thephysicalmeaningof themomentumtensorcomponents:
ā Thequantity p,proportional to themassandto thevelocity, is the linearmomentum.
ā Thequantityq,proportional to themassandtothe initialposition,provides the trajectory
equation. It is calledpassagebecause indicating theparticle ispassing through x0 at time
t=0.
ā Thequantity l splits into twoterms. Thesecondone,qĆv = xĆmv = xĆp, is theorbital
angularmomentum. Theļ¬rstone, l0= lā qĆp/m, is the spinangularmomentum. Theirsum,
l, is theangularmomentum.
⢠Step3: parameterizing theorbit. If theparticlehasan internal structure, introducingthemomentof
inertiamatrixJ andthespin ,wehave,accordingtoKƶnigās theorem:
l0=J , e0= 12 Ā·(J ) .
Henceeachorbitdeļ¬nesaparticleofmassm, spin s0, inertiaJ andcanbeparameterizedby8
coordinates, the3componentsofq, the3componentsof pandthe2componentsof theunitvector
ndeļ¬ning the spindirection, thanks to themomentummapR3ĆR3ĆS2 ā gā : (q,p,n) ā
μ=Ļ(q,p,n) suchthat:
l= 1
m qĆp+s0n, e= 12m ā pā 2+ s20
2 n Ā·(Jā1n) .
The correspondingmeasure is dĪ» = d3qd3pd2n. For simplicity, we consider further only a
singularorbitofdimension6representingaspinlessparticleofmassm,whichcorresponds to the
particularcase l0=0 thenn=0. It canbeparameterizedby6coordinates, the3componentsofq
andthe3componentsof p thanks to themap:
Ļ :R3ĆR3āgā : (q,p) āμ=Ļ(q,p) ,
suchthat:
l= 1
m qĆp, e= 1
2m ā pā2 . (43)
⢠Step 4: modelling the deformation. Statisticalmechanics is essentially basedona set of discrete
particles and, in essence, incompatiblewith continuummechanics. Thus, according tousual
arguments, thepassage fromthestatisticalmechanics to continuummechanics isobtainedby
equivalencebetweenthesetofNparticles(inhugenumber)andaboxofļ¬nitevolumeVoccupied
bythem, largewithrespect totheparticlesizebutsosmallwithrespect tothecontinuousmedium
that it can be considered as inļ¬nitesimal. Let us consider N identical particles contained in
V, largewith respect to the particles but representing the volume element of the continuum
thermodynamics. Themotionof thematterbeingcharacterizedby(13), letusconsider thechange
ofcoordinate
t= tā², x=Ļ(tā²,sā²) .
130
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik