Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 130 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 130 - in Differential Geometrical Theory of Statistics

Image of the Page - 130 -

Image of the Page - 130 - in Differential Geometrical Theory of Statistics

Text of the Page - 130 -

Entropy2016,18, 254 of theparticlemoving inuniformstraightmotion at velocity v. Owing (27) and (28),we can determine thenewcomponentsof the torsor inX: p=mv, q=mx0, l= l0+qƗv, e= e0+m2 ‖ v‖ 2 , (42) The third relation of (42) is the classical transport law of the angularmomentum. In fact, it is a particularcaseof thegeneral transformation laws(28)whenconsideringonlyaGalileanboost. The transformation lawreveals thephysicalmeaningof themomentumtensorcomponents: – Thequantity p,proportional to themassandto thevelocity, is the linearmomentum. – Thequantityq,proportional to themassandtothe initialposition,provides the trajectory equation. It is calledpassagebecause indicating theparticle ispassing through x0 at time t=0. – Thequantity l splits into twoterms. Thesecondone,qƗv = xƗmv = xƗp, is theorbital angularmomentum. Thefirstone, l0= lāˆ’ qƗp/m, is the spinangularmomentum. Theirsum, l, is theangularmomentum. • Step3: parameterizing theorbit. If theparticlehasan internal structure, introducingthemomentof inertiamatrixJ andthespin ,wehave,accordingtoKƶnig’s theorem: l0=J , e0= 12 Ā·(J ) . Henceeachorbitdefinesaparticleofmassm, spin s0, inertiaJ andcanbeparameterizedby8 coordinates, the3componentsofq, the3componentsof pandthe2componentsof theunitvector ndefining the spindirection, thanks to themomentummapR3ƗR3ƗS2 → gāˆ— : (q,p,n) → μ=ψ(q,p,n) suchthat: l= 1 m qƗp+s0n, e= 12m ‖ p‖ 2+ s20 2 n Ā·(Jāˆ’1n) . The correspondingmeasure is dĪ» = d3qd3pd2n. For simplicity, we consider further only a singularorbitofdimension6representingaspinlessparticleofmassm,whichcorresponds to the particularcase l0=0 thenn=0. It canbeparameterizedby6coordinates, the3componentsofq andthe3componentsof p thanks to themap: ψ :R3ƗR3→gāˆ— : (q,p) →μ=ψ(q,p) , suchthat: l= 1 m qƗp, e= 1 2m ‖ p‖2 . (43) • Step 4: modelling the deformation. Statisticalmechanics is essentially basedona set of discrete particles and, in essence, incompatiblewith continuummechanics. Thus, according tousual arguments, thepassage fromthestatisticalmechanics to continuummechanics isobtainedby equivalencebetweenthesetofNparticles(inhugenumber)andaboxoffinitevolumeVoccupied bythem, largewithrespect totheparticlesizebutsosmallwithrespect tothecontinuousmedium that it can be considered as infinitesimal. Let us consider N identical particles contained in V, largewith respect to the particles but representing the volume element of the continuum thermodynamics. Themotionof thematterbeingcharacterizedby(13), letusconsider thechange ofcoordinate t= t′, x=Ļ•(t′,s′) . 130
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrƩdƩric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics