Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 130 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 130 - in Differential Geometrical Theory of Statistics

Bild der Seite - 130 -

Bild der Seite - 130 - in Differential Geometrical Theory of Statistics

Text der Seite - 130 -

Entropy2016,18, 254 of theparticlemoving inuniformstraightmotion at velocity v. Owing (27) and (28),we can determine thenewcomponentsof the torsor inX: p=mv, q=mx0, l= l0+q×v, e= e0+m2 ‖ v‖ 2 , (42) The third relation of (42) is the classical transport law of the angularmomentum. In fact, it is a particularcaseof thegeneral transformation laws(28)whenconsideringonlyaGalileanboost. The transformation lawreveals thephysicalmeaningof themomentumtensorcomponents: – Thequantity p,proportional to themassandto thevelocity, is the linearmomentum. – Thequantityq,proportional to themassandtothe initialposition,provides the trajectory equation. It is calledpassagebecause indicating theparticle ispassing through x0 at time t=0. – Thequantity l splits into twoterms. Thesecondone,q×v = x×mv = x×p, is theorbital angularmomentum. TheïŹrstone, l0= l− q×p/m, is the spinangularmomentum. Theirsum, l, is theangularmomentum. ‱ Step3: parameterizing theorbit. If theparticlehasan internal structure, introducingthemomentof inertiamatrixJ andthespin ,wehave,accordingtoKönig’s theorem: l0=J , e0= 12 ·(J ) . HenceeachorbitdeïŹnesaparticleofmassm, spin s0, inertiaJ andcanbeparameterizedby8 coordinates, the3componentsofq, the3componentsof pandthe2componentsof theunitvector ndeïŹning the spindirection, thanks to themomentummapR3×R3×S2 → g∗ : (q,p,n) → ÎŒ=ψ(q,p,n) suchthat: l= 1 m q×p+s0n, e= 12m ‖ p‖ 2+ s20 2 n ·(J−1n) . The correspondingmeasure is dλ = d3qd3pd2n. For simplicity, we consider further only a singularorbitofdimension6representingaspinlessparticleofmassm,whichcorresponds to the particularcase l0=0 thenn=0. It canbeparameterizedby6coordinates, the3componentsofq andthe3componentsof p thanks to themap: ψ :R3×R3→g∗ : (q,p) →Ό=ψ(q,p) , suchthat: l= 1 m q×p, e= 1 2m ‖ p‖2 . (43) ‱ Step 4: modelling the deformation. Statisticalmechanics is essentially basedona set of discrete particles and, in essence, incompatiblewith continuummechanics. Thus, according tousual arguments, thepassage fromthestatisticalmechanics to continuummechanics isobtainedby equivalencebetweenthesetofNparticles(inhugenumber)andaboxofïŹnitevolumeVoccupied bythem, largewithrespect totheparticlesizebutsosmallwithrespect tothecontinuousmedium that it can be considered as inïŹnitesimal. Let us consider N identical particles contained in V, largewith respect to the particles but representing the volume element of the continuum thermodynamics. Themotionof thematterbeingcharacterizedby(13), letusconsider thechange ofcoordinate t= tâ€Č, x=ϕ(tâ€Č,sâ€Č) . 130
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics