Seite - 130 - in Differential Geometrical Theory of Statistics
Bild der Seite - 130 -
Text der Seite - 130 -
Entropy2016,18, 254
of theparticlemoving inuniformstraightmotion at velocity v. Owing (27) and (28),we can
determine thenewcomponentsof the torsor inX:
p=mv, q=mx0, l= l0+qĂv, e= e0+m2 â vâ 2 , (42)
The third relation of (42) is the classical transport law of the angularmomentum. In fact, it is a
particularcaseof thegeneral transformation laws(28)whenconsideringonlyaGalileanboost.
The transformation lawreveals thephysicalmeaningof themomentumtensorcomponents:
â Thequantity p,proportional to themassandto thevelocity, is the linearmomentum.
â Thequantityq,proportional to themassandtothe initialposition,provides the trajectory
equation. It is calledpassagebecause indicating theparticle ispassing through x0 at time
t=0.
â Thequantity l splits into twoterms. Thesecondone,qĂv = xĂmv = xĂp, is theorbital
angularmomentum. TheïŹrstone, l0= lâ qĂp/m, is the spinangularmomentum. Theirsum,
l, is theangularmomentum.
âą Step3: parameterizing theorbit. If theparticlehasan internal structure, introducingthemomentof
inertiamatrixJ andthespin ,wehave,accordingtoKönigâs theorem:
l0=J , e0= 12 ·(J ) .
HenceeachorbitdeïŹnesaparticleofmassm, spin s0, inertiaJ andcanbeparameterizedby8
coordinates, the3componentsofq, the3componentsof pandthe2componentsof theunitvector
ndeïŹning the spindirection, thanks to themomentummapR3ĂR3ĂS2 â gâ : (q,p,n) â
ÎŒ=Ï(q,p,n) suchthat:
l= 1
m qĂp+s0n, e= 12m â pâ 2+ s20
2 n ·(Jâ1n) .
The correspondingmeasure is dλ = d3qd3pd2n. For simplicity, we consider further only a
singularorbitofdimension6representingaspinlessparticleofmassm,whichcorresponds to the
particularcase l0=0 thenn=0. It canbeparameterizedby6coordinates, the3componentsofq
andthe3componentsof p thanks to themap:
Ï :R3ĂR3âgâ : (q,p) âÎŒ=Ï(q,p) ,
suchthat:
l= 1
m qĂp, e= 1
2m â pâ2 . (43)
âą Step 4: modelling the deformation. Statisticalmechanics is essentially basedona set of discrete
particles and, in essence, incompatiblewith continuummechanics. Thus, according tousual
arguments, thepassage fromthestatisticalmechanics to continuummechanics isobtainedby
equivalencebetweenthesetofNparticles(inhugenumber)andaboxofïŹnitevolumeVoccupied
bythem, largewithrespect totheparticlesizebutsosmallwithrespect tothecontinuousmedium
that it can be considered as inïŹnitesimal. Let us consider N identical particles contained in
V, largewith respect to the particles but representing the volume element of the continuum
thermodynamics. Themotionof thematterbeingcharacterizedby(13), letusconsider thechange
ofcoordinate
t= tâČ, x=Ï(tâČ,sâČ) .
130
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik