Page - 131 - in Differential Geometrical Theory of Statistics
Image of the Page - 131 -
Text of the Page - 131 -
Entropy2016,18, 254
The jacobeanmatrixreads:
āX
āXā²=P= (
1 0
v F )
. (44)
Fromthenon, themomentumisconsideredasanafļ¬netensor, i.e., its componentsaremodiļ¬ed
bytheactionofanyafļ¬netransformation.
Besides,wesupposethat theboxof initialvolumeV0 isatrest intheconsideredcoordinatesystem
(v=0)andthedeformationgradientF isuniforminthebox, then:
dx=Fdsā² .
Accordingto (3), the linearmomentumis transformedaccordingto:
p=FāTpā² . (45)
Foraparticle initiallyatpositionx, thepassage isgivenby(42):
q=mx .
Themeasurebecomes
dĪ»=m3d3xd3pd2n=m3d3sā²d3pā²d2n .
For reasons thatwillbe justiļ¬edatStep5,weconsider the inļ¬nitesimalgenerator:
Z=(āW,0) .
As thebox isat rest in theconsideredcoordinatesystem, thevelocity isnulland,owingto (14):
W= βU= (
β
0 )
. (46)
Hence thedualpairing(26) is reducedto:
μZ= βe ,
and,owingto (43), (45)and(15), foraspinlessmassiveparticle:
μZ= β
2m ā pā2= β
2m āFāTpā² ā2= β
2m pā²TCā1pā² .
For reasonsof integrability as explained inSection6, it is usual to replace the orbit by the subset
V0ĆR3ĆS2 orb(μ) . It isworthremarkingthat,unlike theorbit, this set isnotpreservedby
theactionbut the integrals in (10)and(11)are invariant. Equation(10)gives foraparticle:
z= ln(m3I0I1I2) ,
where:
I0= ā«
V0 d3sā²=V0 ,
I1= ā«
R3 eā β
2m p ā²TCā1pā²d3pā² ,
I2= ā«
S2 d2n=4Ļ .
131
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik