Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 131 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 131 - in Differential Geometrical Theory of Statistics

Image of the Page - 131 -

Image of the Page - 131 - in Differential Geometrical Theory of Statistics

Text of the Page - 131 -

Entropy2016,18, 254 The jacobeanmatrixreads: āˆ‚X āˆ‚X′=P= ( 1 0 v F ) . (44) Fromthenon, themomentumisconsideredasanaffinetensor, i.e., its componentsaremodified bytheactionofanyaffinetransformation. Besides,wesupposethat theboxof initialvolumeV0 isatrest intheconsideredcoordinatesystem (v=0)andthedeformationgradientF isuniforminthebox, then: dx=Fds′ . Accordingto (3), the linearmomentumis transformedaccordingto: p=Fāˆ’Tp′ . (45) Foraparticle initiallyatpositionx, thepassage isgivenby(42): q=mx . Themeasurebecomes dĪ»=m3d3xd3pd2n=m3d3s′d3p′d2n . For reasons thatwillbe justifiedatStep5,weconsider the infinitesimalgenerator: Z=(āˆ’W,0) . As thebox isat rest in theconsideredcoordinatesystem, thevelocity isnulland,owingto (14): W= βU= ( β 0 ) . (46) Hence thedualpairing(26) is reducedto: μZ= βe , and,owingto (43), (45)and(15), foraspinlessmassiveparticle: μZ= β 2m ‖ p‖2= β 2m ‖Fāˆ’Tp′ ‖2= β 2m p′TCāˆ’1p′ . For reasonsof integrability as explained inSection6, it is usual to replace the orbit by the subset V0ƗR3ƗS2 orb(μ) . It isworthremarkingthat,unlike theorbit, this set isnotpreservedby theactionbut the integrals in (10)and(11)are invariant. Equation(10)gives foraparticle: z= ln(m3I0I1I2) , where: I0= ∫ V0 d3s′=V0 , I1= ∫ R3 eāˆ’ β 2m p ′TCāˆ’1p′d3p′ , I2= ∫ S2 d2n=4Ļ€ . 131
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrƩdƩric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics