Seite - 131 - in Differential Geometrical Theory of Statistics
Bild der Seite - 131 -
Text der Seite - 131 -
Entropy2016,18, 254
The jacobeanmatrixreads:
∂X
∂X′=P= (
1 0
v F )
. (44)
Fromthenon, themomentumisconsideredasanaffinetensor, i.e., its componentsaremodified
bytheactionofanyaffinetransformation.
Besides,wesupposethat theboxof initialvolumeV0 isatrest intheconsideredcoordinatesystem
(v=0)andthedeformationgradientF isuniforminthebox, then:
dx=Fds′ .
Accordingto (3), the linearmomentumis transformedaccordingto:
p=F−Tp′ . (45)
Foraparticle initiallyatpositionx, thepassage isgivenby(42):
q=mx .
Themeasurebecomes
dλ=m3d3xd3pd2n=m3d3s′d3p′d2n .
For reasons thatwillbe justifiedatStep5,weconsider the infinitesimalgenerator:
Z=(−W,0) .
As thebox isat rest in theconsideredcoordinatesystem, thevelocity isnulland,owingto (14):
W= βU= (
β
0 )
. (46)
Hence thedualpairing(26) is reducedto:
μZ= βe ,
and,owingto (43), (45)and(15), foraspinlessmassiveparticle:
μZ= β
2m ‖ p‖2= β
2m ‖F−Tp′ ‖2= β
2m p′TC−1p′ .
For reasonsof integrability as explained inSection6, it is usual to replace the orbit by the subset
V0×R3×S2 orb(μ) . It isworthremarkingthat,unlike theorbit, this set isnotpreservedby
theactionbut the integrals in (10)and(11)are invariant. Equation(10)gives foraparticle:
z= ln(m3I0I1I2) ,
where:
I0= ∫
V0 d3s′=V0 ,
I1= ∫
R3 e− β
2m p ′TC−1p′d3p′ ,
I2= ∫
S2 d2n=4π .
131
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik