Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 131 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 131 - in Differential Geometrical Theory of Statistics

Bild der Seite - 131 -

Bild der Seite - 131 - in Differential Geometrical Theory of Statistics

Text der Seite - 131 -

Entropy2016,18, 254 The jacobeanmatrixreads: ∂X ∂X′=P= ( 1 0 v F ) . (44) Fromthenon, themomentumisconsideredasanaffinetensor, i.e., its componentsaremodified bytheactionofanyaffinetransformation. Besides,wesupposethat theboxof initialvolumeV0 isatrest intheconsideredcoordinatesystem (v=0)andthedeformationgradientF isuniforminthebox, then: dx=Fds′ . Accordingto (3), the linearmomentumis transformedaccordingto: p=F−Tp′ . (45) Foraparticle initiallyatpositionx, thepassage isgivenby(42): q=mx . Themeasurebecomes dλ=m3d3xd3pd2n=m3d3s′d3p′d2n . For reasons thatwillbe justifiedatStep5,weconsider the infinitesimalgenerator: Z=(−W,0) . As thebox isat rest in theconsideredcoordinatesystem, thevelocity isnulland,owingto (14): W= βU= ( β 0 ) . (46) Hence thedualpairing(26) is reducedto: μZ= βe , and,owingto (43), (45)and(15), foraspinlessmassiveparticle: μZ= β 2m ‖ p‖2= β 2m ‖F−Tp′ ‖2= β 2m p′TC−1p′ . For reasonsof integrability as explained inSection6, it is usual to replace the orbit by the subset V0×R3×S2 orb(μ) . It isworthremarkingthat,unlike theorbit, this set isnotpreservedby theactionbut the integrals in (10)and(11)are invariant. Equation(10)gives foraparticle: z= ln(m3I0I1I2) , where: I0= ∫ V0 d3s′=V0 , I1= ∫ R3 e− β 2m p ′TC−1p′d3p′ , I2= ∫ S2 d2n=4π . 131
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics