Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 133 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 133 - in Differential Geometrical Theory of Statistics

Image of the Page - 133 -

Image of the Page - 133 - in Differential Geometrical Theory of Statistics

Text of the Page - 133 -

Entropy2016,18, 254 • Step6: boostmethod. For theboxat rest in thecoordinatesystemX, the temperature4-vector is givenby(46): W= ( β 0 ) . Anewcoordinatesystem XĀÆ inwhichtheboxhas thevelocityvcanbededucedfromX=PXĀÆ+C byapplyingaboostu=āˆ’v (hencek=0,Ļ„0=0andR=1R3). The transformation lawofvectors gives thenewcomponents WĀÆ= ( β βv ) , and(9) leads to: zĀÆ= z+ mβ 2 ‖v‖2= z+ m 2β ‖w‖2 . Taking intoaccount (47)andleavingout thebars: z= 1 2 ln(det(C))āˆ’ 3 2 lnβ+ m 2β ‖w‖2+Cte . (48) It isclearfrom(11) thats isLegendreconjugateofāˆ’z, then, introducingtheinternalenergy(which isnothingother thantheGalilean invariant (40)): eint= eāˆ’ 12m ‖ p‖ 2 , theentropyis: s= 3 2 lneint+ 1 2 ln(det(C))+Cte , and,byZ=āˆ‚s/āˆ‚M,wederive thecorrespondingmomenta: β= āˆ‚s āˆ‚e = 3 2eint , w=āˆ’gradps= 32eint p m . AsEquation(47),Equation(48)andtheexpressionsof s,βandwarenotaffectedbythearbitrary choiceofV0. • Step 7: link between z and ζ. As z is an extensivequantity, its value forN identical particles is zN=Nz. Planck’spotentialζbeingaspecificquantity,weclaimthat: ζ= zN Nm = z m = 1 2m ln(det(C))āˆ’ 3 2m lnβ+ 1 2β ‖w‖2+Cte . By (16)and(17),weobtain the linear4-momentumĪ =(H,āˆ’pT)andCauchy’sstresses: H=ρ ( 3 2 kBT m + 1 2 ‖v‖2 ) , p=ρv, σ=āˆ’q1 R3 , where,by theexpressionof thepressure,werecover the idealgas law: q= ρ m kBT= N V kBT . Thefirstprincipleof thermodynamics (18) reads: āˆ‚H āˆ‚t +div (Hvāˆ’Ļƒv)=0, ρdv dt =āˆ’gradq, āˆ‚Ļ āˆ‚t +div(ρv)=0 . 133
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrƩdƩric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics