Page - 133 - in Differential Geometrical Theory of Statistics
Image of the Page - 133 -
Text of the Page - 133 -
Entropy2016,18, 254
⢠Step6: boostmethod. For theboxat rest in thecoordinatesystemX, the temperature4-vector is
givenby(46):
W= (
β
0 )
.
Anewcoordinatesystem XĀÆ inwhichtheboxhas thevelocityvcanbededucedfromX=PXĀÆ+C
byapplyingaboostu=āv (hencek=0,Ļ0=0andR=1R3). The transformation lawofvectors
gives thenewcomponents
WĀÆ= (
β
βv )
,
and(9) leads to:
z¯= z+ mβ
2 āvā2= z+ m
2β āwā2 .
Taking intoaccount (47)andleavingout thebars:
z= 1
2 ln(det(C))ā 3
2 lnβ+ m
2β āwā2+Cte . (48)
It isclearfrom(11) thats isLegendreconjugateofāz, then, introducingtheinternalenergy(which
isnothingother thantheGalilean invariant (40)):
eint= eā 12m ā pā 2 ,
theentropyis:
s= 3
2 lneint+ 1
2 ln(det(C))+Cte ,
and,byZ=ās/āM,wederive thecorrespondingmomenta:
β= ās
āe = 3
2eint , w=āgradps= 32eint p
m .
AsEquation(47),Equation(48)andtheexpressionsof s,βandwarenotaffectedbythearbitrary
choiceofV0.
⢠Step 7: link between z and ζ. As z is an extensivequantity, its value forN identical particles is
zN=Nz. Planckāspotentialζbeingaspeciļ¬cquantity,weclaimthat:
ζ= zN
Nm = z
m = 1
2m ln(det(C))ā 3
2m lnβ+ 1
2β āwā2+Cte .
By (16)and(17),weobtain the linear4-momentumĪ =(H,āpT)andCauchyāsstresses:
H=Ļ (
3
2 kBT
m + 1
2 āvā2 )
, p=Ļv, Ļ=āq1
R3 ,
where,by theexpressionof thepressure,werecover the idealgas law:
q= Ļ
m kBT= N
V kBT .
Theļ¬rstprincipleof thermodynamics (18) reads:
āH
āt +div (HvāĻv)=0, Ļdv
dt =āgradq, āĻ
āt +div(Ļv)=0 .
133
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik