Seite - 133 - in Differential Geometrical Theory of Statistics
Bild der Seite - 133 -
Text der Seite - 133 -
Entropy2016,18, 254
• Step6: boostmethod. For theboxat rest in thecoordinatesystemX, the temperature4-vector is
givenby(46):
W= (
β
0 )
.
Anewcoordinatesystem X¯ inwhichtheboxhas thevelocityvcanbededucedfromX=PX¯+C
byapplyingaboostu=−v (hencek=0,τ0=0andR=1R3). The transformation lawofvectors
gives thenewcomponents
W¯= (
β
βv )
,
and(9) leads to:
z¯= z+ mβ
2 ‖v‖2= z+ m
2β ‖w‖2 .
Taking intoaccount (47)andleavingout thebars:
z= 1
2 ln(det(C))− 3
2 lnβ+ m
2β ‖w‖2+Cte . (48)
It isclearfrom(11) thats isLegendreconjugateof−z, then, introducingtheinternalenergy(which
isnothingother thantheGalilean invariant (40)):
eint= e− 12m ‖ p‖ 2 ,
theentropyis:
s= 3
2 lneint+ 1
2 ln(det(C))+Cte ,
and,byZ=∂s/∂M,wederive thecorrespondingmomenta:
β= ∂s
∂e = 3
2eint , w=−gradps= 32eint p
m .
AsEquation(47),Equation(48)andtheexpressionsof s,βandwarenotaffectedbythearbitrary
choiceofV0.
• Step 7: link between z and ζ. As z is an extensivequantity, its value forN identical particles is
zN=Nz. Planck’spotentialζbeingaspecificquantity,weclaimthat:
ζ= zN
Nm = z
m = 1
2m ln(det(C))− 3
2m lnβ+ 1
2β ‖w‖2+Cte .
By (16)and(17),weobtain the linear4-momentumΠ=(H,−pT)andCauchy’sstresses:
H=ρ (
3
2 kBT
m + 1
2 ‖v‖2 )
, p=ρv, σ=−q1
R3 ,
where,by theexpressionof thepressure,werecover the idealgas law:
q= ρ
m kBT= N
V kBT .
Thefirstprincipleof thermodynamics (18) reads:
∂H
∂t +div (Hv−σv)=0, ρdv
dt =−gradq, ∂ρ
∂t +div(ρv)=0 .
133
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik