Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 134 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 134 - in Differential Geometrical Theory of Statistics

Image of the Page - 134 -

Image of the Page - 134 - in Differential Geometrical Theory of Statistics

Text of the Page - 134 -

Entropy2016,18, 254 Werecognize thebalanceofenergy, linearmomentumandmass. Remark4. TheHessianmatrix I of−z, consideredas functionofW throughZ, ispositivedefinite [3]. It is Fishermetric of the InformationGeometry. For the expression (48), it is easy toverify it: −δMδZ= 1 β ( eint(δβ)2+m ‖ δw− δβm p‖ 2 ) >0 , for anynonvanishingδZtaking into accountβ> 0,eint> 0andm> 0. On this basis,we canconstruct a thermodynamic lengthof apath t →X(t) [21]: L= ∫ t1 t0 √ (δW(t))TI(t)δW(t)dt , whereδW(t) is theperturbationof the temperaturevector, tangent to the space-timeatX(t).Wecanalsodefine arelatedquantity, Jensen–Shannondivergenceof thepath: J=(t1− t0) ∫ t1 t0 (δW(t))TI(t)δW(t)dt . 8.Conclusions Theaboveapproach isnot limited to classicalmechanics but canbeusedasguiding ideas to tackle therelativisticmechanics. Beyondthestrictapplicationtophysics, it canbe takenassourceof inspiration tobroachother topicssuchas thescienceof informationfromtheviewpointofdifferential geometryandLiegroups.Wehopetohavemodestlycontributedto thisaim. Conflictsof Interest:Theauthorsdeclarenoconflictof interest. References 1. Souriau, J.-M. Milieux continus de dimension 1, 2 ou 3 : statique et dynamique. Available online: http://jmsouriau.com/Publications/JMSouriau-MilContDim1991.pdf (accessedon9July2016). (InFrench) 2. DeSaxcé,G.;Vallée,C.GalileanMechanicsandThermodynamicsofContinua;Wiley-ISTE:London,UK,2016. 3. Souriau, J.-M.StructuredesSystèmesDynamiques;Dunod: Paris,France,1970. (InFrench) 4. Souriau, J.-M. Structure of Dynamical Systems: A Symplectic View of Physics; Birkhäuser: NewYork, NY, USA,1997. 5. DeSaxcé,G.;Vallée,C.AffineTensors inMechanicsofFreelyFallingParticlesandRigidBodies.Math.Mech. Solid J.2011,17, 413–430. 6. Guillemin,V.;Sternberg,S.SymplecticTechniques inPhysics;CambridgeUniversityPress:Cambridge,MA, USA,1984. 7. Souriau, J.-M.ThermodynamiqueetGéométrie. InDifferentialGeometricalMethods inMathematicalPhysics II; Springer: Berlin/Heidelberg,Germany,1976;pp. 369–397. (InFrench) 8. Souriau, J.-M.ThermodynamiqueRelativistedesFluides;CentredePhsyiqueThéorique:Marseille,France,1977; Volume35,pp.21–34. (InFrench) 9. Tulczyjew,W.;Urbañski,P.;Grabowski, J.Apseudocategoryofprincipalbundles.AttidellaRealeAccademia delleScienzediTorino1988,122, 66–72. (In Italian) 10. Libermann, P.; Marle, C.-M. Symplectic Geometry and Analytical Mechanics; Springer: Dordrecht, TheNetherlands,1987. 11. Vallée,C.;Lerintiu,C.Convexanalysisandentropycalculation instatisticalmechanics.Proc.A.Razmadze Math. Inst. 2005,137, 111–129. 12. Iglesias,P.Essaide“thermodynamiquerationnelle”desmilieuxcontinus.Annalesde l’IHPPhysiqueThéorique 1981,34, 1–24. (InFrench) 13. Vallée,C.Relativistic thermodynamicsofcontinua. Int. J.Eng. Sci. 1981,19, 589–601. 134
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics