Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 134 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 134 - in Differential Geometrical Theory of Statistics

Bild der Seite - 134 -

Bild der Seite - 134 - in Differential Geometrical Theory of Statistics

Text der Seite - 134 -

Entropy2016,18, 254 Werecognize thebalanceofenergy, linearmomentumandmass. Remark4. TheHessianmatrix I of−z, consideredas functionofW throughZ, ispositivedefinite [3]. It is Fishermetric of the InformationGeometry. For the expression (48), it is easy toverify it: −δMδZ= 1 β ( eint(δβ)2+m ‖ δw− δβm p‖ 2 ) >0 , for anynonvanishingδZtaking into accountβ> 0,eint> 0andm> 0. On this basis,we canconstruct a thermodynamic lengthof apath t →X(t) [21]: L= ∫ t1 t0 √ (δW(t))TI(t)δW(t)dt , whereδW(t) is theperturbationof the temperaturevector, tangent to the space-timeatX(t).Wecanalsodefine arelatedquantity, Jensen–Shannondivergenceof thepath: J=(t1− t0) ∫ t1 t0 (δW(t))TI(t)δW(t)dt . 8.Conclusions Theaboveapproach isnot limited to classicalmechanics but canbeusedasguiding ideas to tackle therelativisticmechanics. Beyondthestrictapplicationtophysics, it canbe takenassourceof inspiration tobroachother topicssuchas thescienceof informationfromtheviewpointofdifferential geometryandLiegroups.Wehopetohavemodestlycontributedto thisaim. Conflictsof Interest:Theauthorsdeclarenoconflictof interest. References 1. Souriau, J.-M. Milieux continus de dimension 1, 2 ou 3 : statique et dynamique. Available online: http://jmsouriau.com/Publications/JMSouriau-MilContDim1991.pdf (accessedon9July2016). (InFrench) 2. DeSaxcé,G.;Vallée,C.GalileanMechanicsandThermodynamicsofContinua;Wiley-ISTE:London,UK,2016. 3. Souriau, J.-M.StructuredesSystèmesDynamiques;Dunod: Paris,France,1970. (InFrench) 4. Souriau, J.-M. Structure of Dynamical Systems: A Symplectic View of Physics; Birkhäuser: NewYork, NY, USA,1997. 5. DeSaxcé,G.;Vallée,C.AffineTensors inMechanicsofFreelyFallingParticlesandRigidBodies.Math.Mech. Solid J.2011,17, 413–430. 6. Guillemin,V.;Sternberg,S.SymplecticTechniques inPhysics;CambridgeUniversityPress:Cambridge,MA, USA,1984. 7. Souriau, J.-M.ThermodynamiqueetGéométrie. InDifferentialGeometricalMethods inMathematicalPhysics II; Springer: Berlin/Heidelberg,Germany,1976;pp. 369–397. (InFrench) 8. Souriau, J.-M.ThermodynamiqueRelativistedesFluides;CentredePhsyiqueThéorique:Marseille,France,1977; Volume35,pp.21–34. (InFrench) 9. Tulczyjew,W.;Urbañski,P.;Grabowski, J.Apseudocategoryofprincipalbundles.AttidellaRealeAccademia delleScienzediTorino1988,122, 66–72. (In Italian) 10. Libermann, P.; Marle, C.-M. Symplectic Geometry and Analytical Mechanics; Springer: Dordrecht, TheNetherlands,1987. 11. Vallée,C.;Lerintiu,C.Convexanalysisandentropycalculation instatisticalmechanics.Proc.A.Razmadze Math. Inst. 2005,137, 111–129. 12. Iglesias,P.Essaide“thermodynamiquerationnelle”desmilieuxcontinus.Annalesde l’IHPPhysiqueThéorique 1981,34, 1–24. (InFrench) 13. Vallée,C.Relativistic thermodynamicsofcontinua. Int. J.Eng. Sci. 1981,19, 589–601. 134
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics