Page - 142 - in Differential Geometrical Theory of Statistics
Image of the Page - 142 -
Text of the Page - 142 -
Entropy2016,18, 433
1. Introduction
1.1. TheNotation
Throughout thepaperweuse thafollowingnotation.N is thesetofnonnegative integers,Z is
theringof integers,R is theïŹeldofrealnumbers,Câ(M) is theassociativecommutativealgebraof
realvaluedsmoothfunctions inasmoothmanifoldM. LetâbeaKoszulconnection inamanifoldM,
Râ is thecurvature tensorofâ. It isdeïŹnedby
Râ(X,Y)=âXâYââYâXââ[X,Y].
Tâ is the torsiontensorofâ. It isdeïŹnedby
Tâ(X,Y)=âXYââYXâ [X,Y].
LetXbeasmoothvectorïŹeld inM. LXâ is theLiederivativeofâ in thedirectionX · Îč(X)Râ is
the innerproductbyX. ToapairofKoszulconnections (â,ââ)weassignthreedifferentialoperators.
TheyaredenotedbyDâââ,Dâ andDâ.
(A.1) Dâââ is aïŹrst orderdifferential operator. It is deïŹned in thevectorbundleHom(TM,TM).
Itsvaluesbelongto thevectorbundleHom(TMâ2,TM).
(A.2) Dâ andDâ are2ndorderdifferential operators. TheyaredeïŹned in thevectorbundleTM.
Theirvaluesbelongto thevectorbundleHom(TMâ2,TM). LetXbeasectionofTMandletÏ
beasectionofTâMâTM. Thedifferentialoperators justmentionedaredeïŹnedby
Dââ â (Ï)=âââŠÏâÏâŠâ, (1a)
Dâ(X)=LXââ Îč(X)Râ, (1b)
Dâ(X)=â2(X). (1c)
PartAof thispaper ispartiallydevotedto theglobalanalysisof thedifferentialequation
FE(âââ) : Dâââ(Ï)=O.
The solutions to FE(âââ) are useful for addressing the links between the KV homology,
thedifferential topologyandthe informationgeometry.
Thepurposeofa forthcomingpaper is thestudyof thedifferentialequations
FEâ(â) : Dâ(X)=0,
FEââ(â) : Dâ(X)=0.
In theAppendixAto thispaperweoverviewtheroleplayedbythesolutions toFEââ(â) in
somestillopenproblems.
1.2. SomeExplicitFormulas
Let x = (x1,...,xm) be a systemof local coordinate functions of M. In those coordinates the
Christoffel symbols of bothâ andââ are denoted by Îij:k and Îâij:k respectively. We use those
coordinate functions for presenting an element Ï âM(âââ) as amatrix [Ïij]. Thus by setting
âi= ââxi onehas
ââiâj=Îij:kâk.
142
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik