Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 142 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 142 - in Differential Geometrical Theory of Statistics

Image of the Page - 142 -

Image of the Page - 142 - in Differential Geometrical Theory of Statistics

Text of the Page - 142 -

Entropy2016,18, 433 1. Introduction 1.1. TheNotation Throughout thepaperweuse thafollowingnotation.N is thesetofnonnegative integers,Z is theringof integers,R is theïŹeldofrealnumbers,C∞(M) is theassociativecommutativealgebraof realvaluedsmoothfunctions inasmoothmanifoldM. Let∇beaKoszulconnection inamanifoldM, R∇ is thecurvature tensorof∇. It isdeïŹnedby R∇(X,Y)=∇X∇Y−∇Y∇X−∇[X,Y]. T∇ is the torsiontensorof∇. It isdeïŹnedby T∇(X,Y)=∇XY−∇YX− [X,Y]. LetXbeasmoothvectorïŹeld inM. LX∇ is theLiederivativeof∇ in thedirectionX · Îč(X)R∇ is the innerproductbyX. ToapairofKoszulconnections (∇,∇∗)weassignthreedifferentialoperators. TheyaredenotedbyD∇∇∗,D∇ andD∇. (A.1) D∇∇∗ is aïŹrst orderdifferential operator. It is deïŹned in thevectorbundleHom(TM,TM). Itsvaluesbelongto thevectorbundleHom(TM⊗2,TM). (A.2) D∇ andD∇ are2ndorderdifferential operators. TheyaredeïŹned in thevectorbundleTM. Theirvaluesbelongto thevectorbundleHom(TM⊗2,TM). LetXbeasectionofTMandletψ beasectionofT∗M⊗TM. Thedifferentialoperators justmentionedaredeïŹnedby D∇∇ ∗ (ψ)=∇∗◊ψ−ψ◊∇, (1a) D∇(X)=LX∇− Îč(X)R∇, (1b) D∇(X)=∇2(X). (1c) PartAof thispaper ispartiallydevotedto theglobalanalysisof thedifferentialequation FE(∇∇∗) : D∇∇∗(ψ)=O. The solutions to FE(∇∇∗) are useful for addressing the links between the KV homology, thedifferential topologyandthe informationgeometry. Thepurposeofa forthcomingpaper is thestudyof thedifferentialequations FE∗(∇) : D∇(X)=0, FE∗∗(∇) : D∇(X)=0. In theAppendixAto thispaperweoverviewtheroleplayedbythesolutions toFE∗∗(∇) in somestillopenproblems. 1.2. SomeExplicitFormulas Let x = (x1,...,xm) be a systemof local coordinate functions of M. In those coordinates the Christoffel symbols of both∇ and∇∗ are denoted by Γij:k and Γ∗ij:k respectively. We use those coordinate functions for presenting an element ψ ∈M(∇∇∗) as amatrix [ψij]. Thus by setting ∂i= ∂∂xi onehas ∇∂i∂j=Γij:k∂k. 142
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics