Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 142 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 142 - in Differential Geometrical Theory of Statistics

Bild der Seite - 142 -

Bild der Seite - 142 - in Differential Geometrical Theory of Statistics

Text der Seite - 142 -

Entropy2016,18, 433 1. Introduction 1.1. TheNotation Throughout thepaperweuse thafollowingnotation.N is thesetofnonnegative integers,Z is theringof integers,R is theïŹeldofrealnumbers,C∞(M) is theassociativecommutativealgebraof realvaluedsmoothfunctions inasmoothmanifoldM. Let∇beaKoszulconnection inamanifoldM, R∇ is thecurvature tensorof∇. It isdeïŹnedby R∇(X,Y)=∇X∇Y−∇Y∇X−∇[X,Y]. T∇ is the torsiontensorof∇. It isdeïŹnedby T∇(X,Y)=∇XY−∇YX− [X,Y]. LetXbeasmoothvectorïŹeld inM. LX∇ is theLiederivativeof∇ in thedirectionX · Îč(X)R∇ is the innerproductbyX. ToapairofKoszulconnections (∇,∇∗)weassignthreedifferentialoperators. TheyaredenotedbyD∇∇∗,D∇ andD∇. (A.1) D∇∇∗ is aïŹrst orderdifferential operator. It is deïŹned in thevectorbundleHom(TM,TM). Itsvaluesbelongto thevectorbundleHom(TM⊗2,TM). (A.2) D∇ andD∇ are2ndorderdifferential operators. TheyaredeïŹned in thevectorbundleTM. Theirvaluesbelongto thevectorbundleHom(TM⊗2,TM). LetXbeasectionofTMandletψ beasectionofT∗M⊗TM. Thedifferentialoperators justmentionedaredeïŹnedby D∇∇ ∗ (ψ)=∇∗◊ψ−ψ◊∇, (1a) D∇(X)=LX∇− Îč(X)R∇, (1b) D∇(X)=∇2(X). (1c) PartAof thispaper ispartiallydevotedto theglobalanalysisof thedifferentialequation FE(∇∇∗) : D∇∇∗(ψ)=O. The solutions to FE(∇∇∗) are useful for addressing the links between the KV homology, thedifferential topologyandthe informationgeometry. Thepurposeofa forthcomingpaper is thestudyof thedifferentialequations FE∗(∇) : D∇(X)=0, FE∗∗(∇) : D∇(X)=0. In theAppendixAto thispaperweoverviewtheroleplayedbythesolutions toFE∗∗(∇) in somestillopenproblems. 1.2. SomeExplicitFormulas Let x = (x1,...,xm) be a systemof local coordinate functions of M. In those coordinates the Christoffel symbols of both∇ and∇∗ are denoted by Γij:k and Γ∗ij:k respectively. We use those coordinate functions for presenting an element ψ ∈M(∇∇∗) as amatrix [ψij]. Thus by setting ∂i= ∂∂xi onehas ∇∂i∂j=Γij:k∂k. 142
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics