Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 144 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 144 - in Differential Geometrical Theory of Statistics

Image of the Page - 144 -

Image of the Page - 144 - in Differential Geometrical Theory of Statistics

Text of the Page - 144 -

Entropy2016,18, 433 adoptedthreeapproaches. Eachapproachisbasedonitsspecificmachinery.However, thereaderswill face threecochaincomplexeswhicharepairwisequasi isomorphic. TheKVcohomologyispresent throughoutthispaper.AttheendofPartBthereaderwillseethat thetheoryofstatisticalmodels isbut avanishingtheoreminthe theoryofKVhohomology. Thefirstapproach isbasedonthepioneering fundamentalbrute formulaof thecoboundaryoperator.Historically, thebrute formula is thefirst to havebeenconstructed[9]. Thisfirstapproach isusedinmanysectionsof thispaper. Regardingthe theoryofdeformation of theKoszulGeometry, theKVcohomologyis thesolutionto theconjectureofGerstenhaber. In the theoryofmodulesofKValgebroids theroleplayedbytheKVcohomology ispracticallySIMILAR to theroleplayedbytheHocshildcohomology in thecategoryofassociativealggebroidsandtheir modules. This last remarkholds for theroleplayedbytheChevalley-Eilenbergcohomology in the categoryofLie algebroids and theirmodules. Nevertheless, our comparison fails in the theoryof Extensionofmodulesoveralgebroids. Inbothcategoriesofextensionsofmodulesoverassociative algebroidsandLiealgebroids themoduli spaceofequivalenceclass isencodedbycohomologyclasses ofdegreeone. In thecategoryofextensionsofKVmodules themoduli space isencodedbyaspectral sequence. Thatwasaunexpectedfeature in [9]. ThepioneeringcoboundaryoperatorofNijenhuis [28] maybederivedfromthetotalbrutecoboundaryoperator introducedin[29]. Thesecondapproach isbasedonthenotionofsimplecialobjects. Thethirdapproachisbasedonthetheoryofanomalyfunctions forabstractalgebrasandtheir abstractmodules. The ideahasemergedfromrecentcorrespondenceswithoneofmyformer teachers. TheKVanomaly functionof aKoszul connection∇maybe expressed in termsof the∇-Hessian operators∇2,namely KV∇(X,Y,Z)=<∇2(Z),(X,Y)>−<∇2(Z),(Y,X)> . This approach is a powerful for addressing the relationships between the global analysis, the differential topology and the information geometry. The approach by the anomaly functions suggestsmanyconjectures.Amongthoseconjectures is the following. Conjecture. Everyanomaly functionof algebrasandofmodulesyieldsa theoryof cohomologyof algebras andmodules. Section3. This section isdevotedto the theoryofKV(co)homologyofKoszul-Vinbergalgebroids. Wefocusoncohomologicaldatawhichareusedin thepaper. Section4. This section isdevoted theKValgebroidswhicharedefinedbystructuresof locally flatmanifold. TheKVcohomology theory is used forhighlighting the impacts on thedifferential topologyof the informationgeometry and itsmethods. Wemake themost of some relationships betweentheKVcohomologyandtheglobalanalysisof thedifferentialequationFE∗(∇∇∗).Wealso sketch theglobalanalysisof thedifferentialequation FE∗∗(∇). This leads to the function LC ∇→ rb(∇)∈Z. Weexplainhowto interpret rb asadistance. (See theAppendixAtothispaper ). For instance, the function rb gives rise to an numerical invariant rb(M)which measures how far from being anexponential familyisastatisticalmodelM. Thisresult isasignificantcontributiontotheinformation geometry, see [18,22,24]. Section5.Weare interested inhowinteract the informationgeometry, theKVcohomologyand thegeometryandKoszul. Inparticularwerelate thenotionofhyperbolicityandvanishingtheorems in theKVcohomology. 144
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics