Page - 144 - in Differential Geometrical Theory of Statistics
Image of the Page - 144 -
Text of the Page - 144 -
Entropy2016,18, 433
adoptedthreeapproaches. Eachapproachisbasedonitsspeciï¬cmachinery.However, thereaderswill
face threecochaincomplexeswhicharepairwisequasi isomorphic. TheKVcohomologyispresent
throughoutthispaper.AttheendofPartBthereaderwillseethat thetheoryofstatisticalmodels isbut
avanishingtheoreminthe theoryofKVhohomology. Theï¬rstapproach isbasedonthepioneering
fundamentalbrute formulaof thecoboundaryoperator.Historically, thebrute formula is theï¬rst to
havebeenconstructed[9].
Thisï¬rstapproach isusedinmanysectionsof thispaper. Regardingthe theoryofdeformation
of theKoszulGeometry, theKVcohomologyis thesolutionto theconjectureofGerstenhaber. In the
theoryofmodulesofKValgebroids theroleplayedbytheKVcohomology ispracticallySIMILAR
to theroleplayedbytheHocshildcohomology in thecategoryofassociativealggebroidsandtheir
modules. This last remarkholds for theroleplayedbytheChevalley-Eilenbergcohomology in the
categoryofLie algebroids and theirmodules. Nevertheless, our comparison fails in the theoryof
Extensionofmodulesoveralgebroids. Inbothcategoriesofextensionsofmodulesoverassociative
algebroidsandLiealgebroids themoduli spaceofequivalenceclass isencodedbycohomologyclasses
ofdegreeone. In thecategoryofextensionsofKVmodules themoduli space isencodedbyaspectral
sequence. Thatwasaunexpectedfeature in [9]. ThepioneeringcoboundaryoperatorofNijenhuis [28]
maybederivedfromthetotalbrutecoboundaryoperator introducedin[29].
Thesecondapproach isbasedonthenotionofsimplecialobjects.
Thethirdapproachisbasedonthetheoryofanomalyfunctions forabstractalgebrasandtheir
abstractmodules. The ideahasemergedfromrecentcorrespondenceswithoneofmyformer teachers.
TheKVanomaly functionof aKoszul connectionâmaybe expressed in termsof theâ-Hessian
operatorsâ2,namely
KVâ(X,Y,Z)=<â2(Z),(X,Y)>â<â2(Z),(Y,X)> .
This approach is a powerful for addressing the relationships between the global analysis,
the differential topology and the information geometry. The approach by the anomaly functions
suggestsmanyconjectures.Amongthoseconjectures is the following.
Conjecture. Everyanomaly functionof algebrasandofmodulesyieldsa theoryof cohomologyof algebras
andmodules.
Section3. This section isdevotedto the theoryofKV(co)homologyofKoszul-Vinbergalgebroids.
Wefocusoncohomologicaldatawhichareusedin thepaper.
Section4. This section isdevoted theKValgebroidswhicharedeï¬nedbystructuresof locally
ï¬atmanifold. TheKVcohomology theory is used forhighlighting the impacts on thedifferential
topologyof the informationgeometry and itsmethods. Wemake themost of some relationships
betweentheKVcohomologyandtheglobalanalysisof thedifferentialequationFEâ(âââ).Wealso
sketch theglobalanalysisof thedifferentialequation
FEââ(â).
This leads to the function
LC ââ rb(â)âZ.
Weexplainhowto interpret rb asadistance. (See theAppendixAtothispaper ). For instance,
the function rb gives rise to an numerical invariant rb(M)which measures how far from being
anexponential familyisastatisticalmodelM. Thisresult isasigniï¬cantcontributiontotheinformation
geometry, see [18,22,24].
Section5.Weare interested inhowinteract the informationgeometry, theKVcohomologyand
thegeometryandKoszul. Inparticularwerelate thenotionofhyperbolicityandvanishingtheorems
in theKVcohomology.
144
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik