Seite - 144 - in Differential Geometrical Theory of Statistics
Bild der Seite - 144 -
Text der Seite - 144 -
Entropy2016,18, 433
adoptedthreeapproaches. Eachapproachisbasedonitsspecificmachinery.However, thereaderswill
face threecochaincomplexeswhicharepairwisequasi isomorphic. TheKVcohomologyispresent
throughoutthispaper.AttheendofPartBthereaderwillseethat thetheoryofstatisticalmodels isbut
avanishingtheoreminthe theoryofKVhohomology. Thefirstapproach isbasedonthepioneering
fundamentalbrute formulaof thecoboundaryoperator.Historically, thebrute formula is thefirst to
havebeenconstructed[9].
Thisfirstapproach isusedinmanysectionsof thispaper. Regardingthe theoryofdeformation
of theKoszulGeometry, theKVcohomologyis thesolutionto theconjectureofGerstenhaber. In the
theoryofmodulesofKValgebroids theroleplayedbytheKVcohomology ispracticallySIMILAR
to theroleplayedbytheHocshildcohomology in thecategoryofassociativealggebroidsandtheir
modules. This last remarkholds for theroleplayedbytheChevalley-Eilenbergcohomology in the
categoryofLie algebroids and theirmodules. Nevertheless, our comparison fails in the theoryof
Extensionofmodulesoveralgebroids. Inbothcategoriesofextensionsofmodulesoverassociative
algebroidsandLiealgebroids themoduli spaceofequivalenceclass isencodedbycohomologyclasses
ofdegreeone. In thecategoryofextensionsofKVmodules themoduli space isencodedbyaspectral
sequence. Thatwasaunexpectedfeature in [9]. ThepioneeringcoboundaryoperatorofNijenhuis [28]
maybederivedfromthetotalbrutecoboundaryoperator introducedin[29].
Thesecondapproach isbasedonthenotionofsimplecialobjects.
Thethirdapproachisbasedonthetheoryofanomalyfunctions forabstractalgebrasandtheir
abstractmodules. The ideahasemergedfromrecentcorrespondenceswithoneofmyformer teachers.
TheKVanomaly functionof aKoszul connection∇maybe expressed in termsof the∇-Hessian
operators∇2,namely
KV∇(X,Y,Z)=<∇2(Z),(X,Y)>−<∇2(Z),(Y,X)> .
This approach is a powerful for addressing the relationships between the global analysis,
the differential topology and the information geometry. The approach by the anomaly functions
suggestsmanyconjectures.Amongthoseconjectures is the following.
Conjecture. Everyanomaly functionof algebrasandofmodulesyieldsa theoryof cohomologyof algebras
andmodules.
Section3. This section isdevotedto the theoryofKV(co)homologyofKoszul-Vinbergalgebroids.
Wefocusoncohomologicaldatawhichareusedin thepaper.
Section4. This section isdevoted theKValgebroidswhicharedefinedbystructuresof locally
flatmanifold. TheKVcohomology theory is used forhighlighting the impacts on thedifferential
topologyof the informationgeometry and itsmethods. Wemake themost of some relationships
betweentheKVcohomologyandtheglobalanalysisof thedifferentialequationFE∗(∇∇∗).Wealso
sketch theglobalanalysisof thedifferentialequation
FE∗∗(∇).
This leads to the function
LC ∇→ rb(∇)∈Z.
Weexplainhowto interpret rb asadistance. (See theAppendixAtothispaper ). For instance,
the function rb gives rise to an numerical invariant rb(M)which measures how far from being
anexponential familyisastatisticalmodelM. Thisresult isasignificantcontributiontotheinformation
geometry, see [18,22,24].
Section5.Weare interested inhowinteract the informationgeometry, theKVcohomologyand
thegeometryandKoszul. Inparticularwerelate thenotionofhyperbolicityandvanishingtheorems
in theKVcohomology.
144
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik