Page - 147 - in Differential Geometrical Theory of Statistics
Image of the Page - 147 -
Text of the Page - 147 -
Entropy2016,18, 433
Warning.
Here algebrameans amultiplication a Ā·bwithout any rule of calculations. So the product a Ā·b Ā· c is
meaningless.
Throughout thispaper, the smoothmanifoldswedealwithare connectedandparacompact. Ina smooth
manifoldMallgeometrical objectsweare interested inare smoothaswell.
Thevector space of smoothvectorļ¬elds in amanifoldM isdenotedbyX(M). It is a leftmodule of the
associative commutativealgebraCā(M).
Considera realvectorbundle
EāM.
Therealvector spaceof sectionsofE isdenotedbyĪ(E).
Deļ¬nition3. Areal algebroidovera smoothmanifoldMisa realvectorbundlewhosevector spaceof sections
is a real algebra.
SothevectorspaceofsectionsofarealalgebroidE isendowedwithaR-bilinearmap
Ī(E)ĆĪ(E) (s,sā)ā s Ā·sā āĪ(E)
Tosimplify themultiplicationof twosections isdenoted s Ā·sā.
Deļ¬nition4. Atwo-sidedmoduleof analgebroidE is avectorbundle
VāM
whosevector spaceof sections is a two-sidedmoduleof thealgebraĪ(E).
Let sbesectionE andletvbeasectionofV. Both leftaction sonvandtherightactionof sonv
aredenotedby s Ā·vandv Ā·s.
Deļ¬nition5. AnanchoredvectorbundleoverMisapair
(E,b)
formedbyarealvectorbundleE andavectorbundlehomomorphism
E eā b(e)āTM.
Thehomomorphismb is called theanchormap.
2.2.AnomalyFunctionsofAlgebroidsandofModules
LetV beatwo-sidedmoduleofanalgebroid (E,b).
Deļ¬nition6. Ananomaly function of an algebroidE is a 3-linearmapAE ofĪ(E)3 inĪ(E)whose values
AE(s1,s2,s3)belongto spanR[(siĀ·sj)Ā·sk,siĀ·(sjĀ·sk); i, j,kā [1,2,3]].Ananomaly functionofanE-moduleV is
a3-linearmapAEV ofĪ(E)2ĆĪ(V) inĪ(V)whosevaluesAEV(s,sā,v)belongtospanR[(sĀ·sā)Ā·v,sĀ·(sāĀ·v)ās,
sā āĪ(E),āvāĪ(V)].
In thispaperweare interestedinsomeanomalyfunctionswhichhavestronggeometrical impacts.
Theyaredeļ¬nedbelow.
147
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik