Seite - 147 - in Differential Geometrical Theory of Statistics
Bild der Seite - 147 -
Text der Seite - 147 -
Entropy2016,18, 433
Warning.
Here algebrameans amultiplication a ·bwithout any rule of calculations. So the product a ·b · c is
meaningless.
Throughout thispaper, the smoothmanifoldswedealwithare connectedandparacompact. Ina smooth
manifoldMallgeometrical objectsweare interested inare smoothaswell.
Thevector space of smoothvectorfields in amanifoldM isdenotedbyX(M). It is a leftmodule of the
associative commutativealgebraC∞(M).
Considera realvectorbundle
E→M.
Therealvector spaceof sectionsofE isdenotedbyΓ(E).
Definition3. Areal algebroidovera smoothmanifoldMisa realvectorbundlewhosevector spaceof sections
is a real algebra.
SothevectorspaceofsectionsofarealalgebroidE isendowedwithaR-bilinearmap
Γ(E)×Γ(E) (s,s∗)→ s ·s∗ ∈Γ(E)
Tosimplify themultiplicationof twosections isdenoted s ·s∗.
Definition4. Atwo-sidedmoduleof analgebroidE is avectorbundle
V→M
whosevector spaceof sections is a two-sidedmoduleof thealgebraΓ(E).
Let sbesectionE andletvbeasectionofV. Both leftaction sonvandtherightactionof sonv
aredenotedby s ·vandv ·s.
Definition5. AnanchoredvectorbundleoverMisapair
(E,b)
formedbyarealvectorbundleE andavectorbundlehomomorphism
E e→ b(e)∈TM.
Thehomomorphismb is called theanchormap.
2.2.AnomalyFunctionsofAlgebroidsandofModules
LetV beatwo-sidedmoduleofanalgebroid (E,b).
Definition6. Ananomaly function of an algebroidE is a 3-linearmapAE ofΓ(E)3 inΓ(E)whose values
AE(s1,s2,s3)belongto spanR[(si·sj)·sk,si·(sj·sk); i, j,k∈ [1,2,3]].Ananomaly functionofanE-moduleV is
a3-linearmapAEV ofΓ(E)2×Γ(V) inΓ(V)whosevaluesAEV(s,s∗,v)belongtospanR[(s·s∗)·v,s·(s∗·v)∀s,
s∗ ∈Γ(E),∀v∈Γ(V)].
In thispaperweare interestedinsomeanomalyfunctionswhichhavestronggeometrical impacts.
Theyaredefinedbelow.
147
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik