Page - 148 - in Differential Geometrical Theory of Statistics
Image of the Page - 148 -
Text of the Page - 148 -
Entropy2016,18, 433
Deļ¬nition7. LetE beanalgebroidand let s,sā,sāāāĪ(E).
(1) Theassociatoranomaly functionofE isdeļ¬nedby
Ass(s,sā,sāā)=(s Ā·sā) Ā·sāāās Ā·(sā Ā·sāā).
(2) TheKoszul-Vinberganomaly functionofE isdeļ¬nedby
KV(s,sā,sāā)=Ass(s,sā,sāā)āAss(sā,s,sāā).
(3) The Jacobi anomaly functionsofE aredeļ¬nedby
J(s,sā,sāā)=(s Ā·sā) Ā·sāā+(sā Ā·sāā) Ā·s+(sāā Ā·s) Ā·sā.
Deļ¬nition8. Letvbea sectionof a two-sidedE-moduleV.
(1) Theassociatoranomaly functionof a leftmoduleV isdeļ¬nedas
Ass(s,sā,v)=(s Ā·sā) Ā·vās Ā·(sā Ā·v).
(2) TheKVanomaly functionsof a twosidedmoduleV aredeļ¬nedas
KV(s,sā,v)=Ass(s,sā,v)āAss(sā,s,v),
KV(s,v,sā)=(s Ā·v) Ā·sāās Ā·(v Ā·sā)ā(v Ā·s) Ā·sā+v Ā·(s Ā·sā).
Deļ¬nition9. Wekeepthenotationusedabove. Lets,sābesectionsofE, letvbeasectionofV and f āCā(M).
(1) TheLeibnizanomaly functionof ananchoredalgebroidE isdeļ¬nedby
L(s, f,sā)= s Ā·(fsā)ādf(b(s))sāā fs Ā·sā.
(2) TheLeibnizanomaly functionof theE-moduleV isdeļ¬nedby
L(s, f,v)= s Ā·(fv)ādf(b(s))vā fs Ā·v.
A category of algebroids and modules of algebroids is deļ¬ned by its anomaly functions.
Theanomalyfunctionsarealsousedfor introducingtheoriesofhomologyofalgebroids.
Somecategoriesofanchoredalgebroidsplay important roles in thedifferentialgeometry.
Deļ¬nition10. (A1):ALiealgebroid is ananchoredalgebroid (E,b) satisfying the identities
s Ā·sā=0,
L(s, f,sā)=0.
(B1):AKValgebroid is ananchoredalgebroid (E,b) satisfying the identities
KV(s,sā,sāā)=0,
L(s, f,sā)=0.
(B2):AvectorbundleV is amoduleofLie algebroid (E,b) if it satisļ¬es the identities
L(s, f,v)=0,
(s Ā·sā) Ā·vās Ā·(sāĀ·v)+sāĀ·(s Ā·v)=0.
148
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- FrƩdƩric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik