Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 148 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 148 - in Differential Geometrical Theory of Statistics

Image of the Page - 148 -

Image of the Page - 148 - in Differential Geometrical Theory of Statistics

Text of the Page - 148 -

Entropy2016,18, 433 Definition7. LetE beanalgebroidand let s,sāˆ—,sāˆ—āˆ—āˆˆĪ“(E). (1) Theassociatoranomaly functionofE isdefinedby Ass(s,sāˆ—,sāˆ—āˆ—)=(s Ā·sāˆ—) Ā·sāˆ—āˆ—āˆ’s Ā·(sāˆ— Ā·sāˆ—āˆ—). (2) TheKoszul-Vinberganomaly functionofE isdefinedby KV(s,sāˆ—,sāˆ—āˆ—)=Ass(s,sāˆ—,sāˆ—āˆ—)āˆ’Ass(sāˆ—,s,sāˆ—āˆ—). (3) The Jacobi anomaly functionsofE aredefinedby J(s,sāˆ—,sāˆ—āˆ—)=(s Ā·sāˆ—) Ā·sāˆ—āˆ—+(sāˆ— Ā·sāˆ—āˆ—) Ā·s+(sāˆ—āˆ— Ā·s) Ā·sāˆ—. Definition8. Letvbea sectionof a two-sidedE-moduleV. (1) Theassociatoranomaly functionof a leftmoduleV isdefinedas Ass(s,sāˆ—,v)=(s Ā·sāˆ—) Ā·vāˆ’s Ā·(sāˆ— Ā·v). (2) TheKVanomaly functionsof a twosidedmoduleV aredefinedas KV(s,sāˆ—,v)=Ass(s,sāˆ—,v)āˆ’Ass(sāˆ—,s,v), KV(s,v,sāˆ—)=(s Ā·v) Ā·sāˆ—āˆ’s Ā·(v Ā·sāˆ—)āˆ’(v Ā·s) Ā·sāˆ—+v Ā·(s Ā·sāˆ—). Definition9. Wekeepthenotationusedabove. Lets,sāˆ—besectionsofE, letvbeasectionofV and f ∈Cāˆž(M). (1) TheLeibnizanomaly functionof ananchoredalgebroidE isdefinedby L(s, f,sāˆ—)= s Ā·(fsāˆ—)āˆ’df(b(s))sāˆ—āˆ’ fs Ā·sāˆ—. (2) TheLeibnizanomaly functionof theE-moduleV isdefinedby L(s, f,v)= s Ā·(fv)āˆ’df(b(s))vāˆ’ fs Ā·v. A category of algebroids and modules of algebroids is defined by its anomaly functions. Theanomalyfunctionsarealsousedfor introducingtheoriesofhomologyofalgebroids. Somecategoriesofanchoredalgebroidsplay important roles in thedifferentialgeometry. Definition10. (A1):ALiealgebroid is ananchoredalgebroid (E,b) satisfying the identities s Ā·sāˆ—=0, L(s, f,sāˆ—)=0. (B1):AKValgebroid is ananchoredalgebroid (E,b) satisfying the identities KV(s,sāˆ—,sāˆ—āˆ—)=0, L(s, f,sāˆ—)=0. (B2):AvectorbundleV is amoduleofLie algebroid (E,b) if it satisfies the identities L(s, f,v)=0, (s Ā·sāˆ—) Ā·vāˆ’s Ā·(sāˆ—Ā·v)+sāˆ—Ā·(s Ā·v)=0. 148
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrƩdƩric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics