Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 148 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 148 - in Differential Geometrical Theory of Statistics

Bild der Seite - 148 -

Bild der Seite - 148 - in Differential Geometrical Theory of Statistics

Text der Seite - 148 -

Entropy2016,18, 433 DeïŹnition7. LetE beanalgebroidand let s,s∗,s∗∗∈Γ(E). (1) Theassociatoranomaly functionofE isdeïŹnedby Ass(s,s∗,s∗∗)=(s ·s∗) ·s∗∗−s ·(s∗ ·s∗∗). (2) TheKoszul-Vinberganomaly functionofE isdeïŹnedby KV(s,s∗,s∗∗)=Ass(s,s∗,s∗∗)−Ass(s∗,s,s∗∗). (3) The Jacobi anomaly functionsofE aredeïŹnedby J(s,s∗,s∗∗)=(s ·s∗) ·s∗∗+(s∗ ·s∗∗) ·s+(s∗∗ ·s) ·s∗. DeïŹnition8. Letvbea sectionof a two-sidedE-moduleV. (1) Theassociatoranomaly functionof a leftmoduleV isdeïŹnedas Ass(s,s∗,v)=(s ·s∗) ·v−s ·(s∗ ·v). (2) TheKVanomaly functionsof a twosidedmoduleV aredeïŹnedas KV(s,s∗,v)=Ass(s,s∗,v)−Ass(s∗,s,v), KV(s,v,s∗)=(s ·v) ·s∗−s ·(v ·s∗)−(v ·s) ·s∗+v ·(s ·s∗). DeïŹnition9. Wekeepthenotationusedabove. Lets,s∗besectionsofE, letvbeasectionofV and f ∈C∞(M). (1) TheLeibnizanomaly functionof ananchoredalgebroidE isdeïŹnedby L(s, f,s∗)= s ·(fs∗)−df(b(s))s∗− fs ·s∗. (2) TheLeibnizanomaly functionof theE-moduleV isdeïŹnedby L(s, f,v)= s ·(fv)−df(b(s))v− fs ·v. A category of algebroids and modules of algebroids is deïŹned by its anomaly functions. Theanomalyfunctionsarealsousedfor introducingtheoriesofhomologyofalgebroids. Somecategoriesofanchoredalgebroidsplay important roles in thedifferentialgeometry. DeïŹnition10. (A1):ALiealgebroid is ananchoredalgebroid (E,b) satisfying the identities s ·s∗=0, L(s, f,s∗)=0. (B1):AKValgebroid is ananchoredalgebroid (E,b) satisfying the identities KV(s,s∗,s∗∗)=0, L(s, f,s∗)=0. (B2):AvectorbundleV is amoduleofLie algebroid (E,b) if it satisïŹes the identities L(s, f,v)=0, (s ·s∗) ·v−s ·(s∗·v)+s∗·(s ·v)=0. 148
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics