Seite - 148 - in Differential Geometrical Theory of Statistics
Bild der Seite - 148 -
Text der Seite - 148 -
Entropy2016,18, 433
DeïŹnition7. LetE beanalgebroidand let s,sâ,sâââÎ(E).
(1) Theassociatoranomaly functionofE isdeïŹnedby
Ass(s,sâ,sââ)=(s ·sâ) ·sâââs ·(sâ ·sââ).
(2) TheKoszul-Vinberganomaly functionofE isdeïŹnedby
KV(s,sâ,sââ)=Ass(s,sâ,sââ)âAss(sâ,s,sââ).
(3) The Jacobi anomaly functionsofE aredeïŹnedby
J(s,sâ,sââ)=(s ·sâ) ·sââ+(sâ ·sââ) ·s+(sââ ·s) ·sâ.
DeïŹnition8. Letvbea sectionof a two-sidedE-moduleV.
(1) Theassociatoranomaly functionof a leftmoduleV isdeïŹnedas
Ass(s,sâ,v)=(s ·sâ) ·vâs ·(sâ ·v).
(2) TheKVanomaly functionsof a twosidedmoduleV aredeïŹnedas
KV(s,sâ,v)=Ass(s,sâ,v)âAss(sâ,s,v),
KV(s,v,sâ)=(s ·v) ·sââs ·(v ·sâ)â(v ·s) ·sâ+v ·(s ·sâ).
DeïŹnition9. Wekeepthenotationusedabove. Lets,sâbesectionsofE, letvbeasectionofV and f âCâ(M).
(1) TheLeibnizanomaly functionof ananchoredalgebroidE isdeïŹnedby
L(s, f,sâ)= s ·(fsâ)âdf(b(s))sââ fs ·sâ.
(2) TheLeibnizanomaly functionof theE-moduleV isdeïŹnedby
L(s, f,v)= s ·(fv)âdf(b(s))vâ fs ·v.
A category of algebroids and modules of algebroids is deïŹned by its anomaly functions.
Theanomalyfunctionsarealsousedfor introducingtheoriesofhomologyofalgebroids.
Somecategoriesofanchoredalgebroidsplay important roles in thedifferentialgeometry.
DeïŹnition10. (A1):ALiealgebroid is ananchoredalgebroid (E,b) satisfying the identities
s ·sâ=0,
L(s, f,sâ)=0.
(B1):AKValgebroid is ananchoredalgebroid (E,b) satisfying the identities
KV(s,sâ,sââ)=0,
L(s, f,sâ)=0.
(B2):AvectorbundleV is amoduleofLie algebroid (E,b) if it satisïŹes the identities
L(s, f,v)=0,
(s ·sâ) ·vâs ·(sâ·v)+sâ·(s ·v)=0.
148
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik