Page - 149 - in Differential Geometrical Theory of Statistics
Image of the Page - 149 -
Text of the Page - 149 -
Entropy2016,18, 433
AvectorbundleV is a two-sidedKVmoduleofaKoszul-Vinbergalgebroid(E,b) if it satisïŹes the identities
L(s, f,v)=0,
KV(s,sâ,v)=0,
KV(s,v,sâ)=0.
Warning.
ConsideravectorV spaceas the trivialvectorbundle
VĂOâ0.
Thenweget
Î(VĂ0)=V.
Therefore analgebra is ananchoredalgebroidover apoint; its anchormapof is the zeromap. Therefore,
theLeibnizanomalyofanalgebra isnothingbut thebilinearityof themultiplication. So thenotionofKValgebra
andKVmodule is clear.
3.TheTheoryofCohomologyofKVAlgebroidsandTheirModules
Thissection isdevotedto thecohomologyofKValgebroidsandKVmodulesofKValgebroids.
KVstands forKoszul-Vinberg.Weshall introduce threeapproaches to the theoryofKVcohomology.
Eachapproachhasitsparticularadvantage. So,dependingontheneedsorontheconcernsoneorother
approachmaybeconvenient. The threeapproachesarecalledâVersionbrute formulaâ,âVersionsemi
simplicial objectsâ, âVersionanomaly functionsâ. Thesamegradedvector space is commonto the
threeconstructions. Theydiffer in theircoboundaryoperators.However, threeconstructions leadto
cohomologycomplexeswhicharepairwisequasi isomorphic.
Eachconstructionleadstotwocochaincomplexes.ThosecomplexesarecalledtheKVcomplexand
totalKVcomplex.TheyaredenotedbyCâKV andCâÏ. Infinalweobtainsixcohomologicalcomplexes.
3.1. TheTheoryofKVCohomologyâVersion theBruteFormulaof theCoboundaryOperator
Thegeometric framework is thecategoryof realKValgebraoidsandtheir twosidedmodules.
HoweverourmachineriesonlymakeuseofR-multi-linearcalculations in thevectorspacesof sections
ofvectorbundles.Withoutanydamagewereplace thecategoriesofKValgebroidsandmodulesofKV
algebroidsbythecategoriesofKValgebrasandabstractmodulesofKValgebras.
3.1.1. TheCochainComplexCKV.
LetWbeatwo-sidedmoduleofaKValgebraA.
DeïŹnition11. Thevector subspace J(W)âWisdeïŹnedby
(a ·b) ·wâa ·(b ·w)=0 âa,bâA
Weconsider theZ-gradedvectorspace
CKV(A,W)=â
q CqKV(A,W).
149
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik