Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 149 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 149 - in Differential Geometrical Theory of Statistics

Bild der Seite - 149 -

Bild der Seite - 149 - in Differential Geometrical Theory of Statistics

Text der Seite - 149 -

Entropy2016,18, 433 AvectorbundleV is a two-sidedKVmoduleofaKoszul-Vinbergalgebroid(E,b) if it satisfies the identities L(s, f,v)=0, KV(s,s∗,v)=0, KV(s,v,s∗)=0. Warning. ConsideravectorV spaceas the trivialvectorbundle V×O→0. Thenweget Γ(V×0)=V. Therefore analgebra is ananchoredalgebroidover apoint; its anchormapof is the zeromap. Therefore, theLeibnizanomalyofanalgebra isnothingbut thebilinearityof themultiplication. So thenotionofKValgebra andKVmodule is clear. 3.TheTheoryofCohomologyofKVAlgebroidsandTheirModules Thissection isdevotedto thecohomologyofKValgebroidsandKVmodulesofKValgebroids. KVstands forKoszul-Vinberg.Weshall introduce threeapproaches to the theoryofKVcohomology. Eachapproachhasitsparticularadvantage. So,dependingontheneedsorontheconcernsoneorother approachmaybeconvenient. The threeapproachesarecalled“Versionbrute formula”,“Versionsemi simplicial objects”, “Versionanomaly functions”. Thesamegradedvector space is commonto the threeconstructions. Theydiffer in theircoboundaryoperators.However, threeconstructions leadto cohomologycomplexeswhicharepairwisequasi isomorphic. Eachconstructionleadstotwocochaincomplexes.ThosecomplexesarecalledtheKVcomplexand totalKVcomplex.TheyaredenotedbyC∗KV andC∗τ. Infinalweobtainsixcohomologicalcomplexes. 3.1. TheTheoryofKVCohomology—Version theBruteFormulaof theCoboundaryOperator Thegeometric framework is thecategoryof realKValgebraoidsandtheir twosidedmodules. HoweverourmachineriesonlymakeuseofR-multi-linearcalculations in thevectorspacesof sections ofvectorbundles.Withoutanydamagewereplace thecategoriesofKValgebroidsandmodulesofKV algebroidsbythecategoriesofKValgebrasandabstractmodulesofKValgebras. 3.1.1. TheCochainComplexCKV. LetWbeatwo-sidedmoduleofaKValgebraA. Definition11. Thevector subspace J(W)⊂Wisdefinedby (a ·b) ·w−a ·(b ·w)=0 ∀a,b∈A Weconsider theZ-gradedvectorspace CKV(A,W)=∑ q CqKV(A,W). 149
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics