Seite - 149 - in Differential Geometrical Theory of Statistics
Bild der Seite - 149 -
Text der Seite - 149 -
Entropy2016,18, 433
AvectorbundleV is a two-sidedKVmoduleofaKoszul-Vinbergalgebroid(E,b) if it satisfies the identities
L(s, f,v)=0,
KV(s,s∗,v)=0,
KV(s,v,s∗)=0.
Warning.
ConsideravectorV spaceas the trivialvectorbundle
V×O→0.
Thenweget
Γ(V×0)=V.
Therefore analgebra is ananchoredalgebroidover apoint; its anchormapof is the zeromap. Therefore,
theLeibnizanomalyofanalgebra isnothingbut thebilinearityof themultiplication. So thenotionofKValgebra
andKVmodule is clear.
3.TheTheoryofCohomologyofKVAlgebroidsandTheirModules
Thissection isdevotedto thecohomologyofKValgebroidsandKVmodulesofKValgebroids.
KVstands forKoszul-Vinberg.Weshall introduce threeapproaches to the theoryofKVcohomology.
Eachapproachhasitsparticularadvantage. So,dependingontheneedsorontheconcernsoneorother
approachmaybeconvenient. The threeapproachesarecalled“Versionbrute formula”,“Versionsemi
simplicial objects”, “Versionanomaly functions”. Thesamegradedvector space is commonto the
threeconstructions. Theydiffer in theircoboundaryoperators.However, threeconstructions leadto
cohomologycomplexeswhicharepairwisequasi isomorphic.
Eachconstructionleadstotwocochaincomplexes.ThosecomplexesarecalledtheKVcomplexand
totalKVcomplex.TheyaredenotedbyC∗KV andC∗τ. Infinalweobtainsixcohomologicalcomplexes.
3.1. TheTheoryofKVCohomology—Version theBruteFormulaof theCoboundaryOperator
Thegeometric framework is thecategoryof realKValgebraoidsandtheir twosidedmodules.
HoweverourmachineriesonlymakeuseofR-multi-linearcalculations in thevectorspacesof sections
ofvectorbundles.Withoutanydamagewereplace thecategoriesofKValgebroidsandmodulesofKV
algebroidsbythecategoriesofKValgebrasandabstractmodulesofKValgebras.
3.1.1. TheCochainComplexCKV.
LetWbeatwo-sidedmoduleofaKValgebraA.
Definition11. Thevector subspace J(W)⊂Wisdefinedby
(a ·b) ·w−a ·(b ·w)=0 ∀a,b∈A
Weconsider theZ-gradedvectorspace
CKV(A,W)=∑
q CqKV(A,W).
149
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik