Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 150 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 150 - in Differential Geometrical Theory of Statistics

Image of the Page - 150 -

Image of the Page - 150 - in Differential Geometrical Theory of Statistics

Text of the Page - 150 -

Entropy2016,18, 433 Thehomogeneousvectorsub-spacesaredefinedby CqKV(A,W)=0 ∀q<0, C0KV(A,W)= J(W), CqKV(A,W)=HomR(A⊗q,W) ∀q>0. Beforepursuingwefixthe followingnotation. Let ξ= a1⊗ ...⊗aq+1∈A⊗q+1 andlet a∈A, ∂iξ= a1⊗ ...aˆi...⊗aq+1, ∂2i,k+1ξ=∂i(∂k+1ξ), a.ξ= q+1 ∑ 1 a1⊗ ...aj−1⊗a.aj⊗aj+1...aq+1. Wearegoingtodefinethecoboundaryoperator δKV :Cq(A,W)→Cq+1(A,W). Thecoboundaryoperator isa linearmap. It isdefinedby [δKV(w)](a)=−a ·w+w ·a ∀w∈ J(W), (4a) [δKVf](ξ)= q ∑ 1 (−1)i[ai · f(∂iξ)− f(ai ·∂iξ)+(f(∂2i,q+1ξ⊗ai)) ·aq+1]∀f ∈CqKV(A,W), ∀ξ∈A⊗q+1. (4b) TheoperatorδKV satisfies the identity δ2KVf=0 ∀f ∈CKV(A,W). Therefore thepair (C∗KV(A,W),δKV) isacochaincomplex. Its cohomologyspace isdenotedby HKV(A,W)=∑ q HqKV(A,W). TheconjectureofGerstenhaber:Comments. AKValgebraA is a two-sidedmodule of itself. An infinitesimal deformations ofA is a 1-cocycle of CKV(A,A) [9]. By the conjecture ofGerstenhaber the cohomology complexCKV(A,A) is generated by the theoryofdeformations in the categoryofKValgebras. The theoryofdeformationofKValgebras is thealgebraicversionof the theoryofdeformationof locallyflat manifolds [2]. Therefore, the complexCKV(A, ) is the solution to the conjectureofMurayGerstenhaber in the categoryof locallyflatmanifolds [27]. Features. (1)The2ndcohomologyspaceH2KV(A,A) is the spaceofnontrivialdeformationsofA. ThedefinitionofKValgebraof a locallyflatmanifoldwill begiven in thenext section. Following [2] everyhyperbolic locallyflatmanifoldhasnon trivial deformations. Thus, ifA is theKValgebraof ahyperbolic locallyflatmanifold then H2KV(A,A) =0. 150
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics