Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 150 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 150 - in Differential Geometrical Theory of Statistics

Bild der Seite - 150 -

Bild der Seite - 150 - in Differential Geometrical Theory of Statistics

Text der Seite - 150 -

Entropy2016,18, 433 Thehomogeneousvectorsub-spacesaredefinedby CqKV(A,W)=0 ∀q<0, C0KV(A,W)= J(W), CqKV(A,W)=HomR(A⊗q,W) ∀q>0. Beforepursuingwefixthe followingnotation. Let ξ= a1⊗ ...⊗aq+1∈A⊗q+1 andlet a∈A, ∂iξ= a1⊗ ...aˆi...⊗aq+1, ∂2i,k+1ξ=∂i(∂k+1ξ), a.ξ= q+1 ∑ 1 a1⊗ ...aj−1⊗a.aj⊗aj+1...aq+1. Wearegoingtodefinethecoboundaryoperator δKV :Cq(A,W)→Cq+1(A,W). Thecoboundaryoperator isa linearmap. It isdefinedby [δKV(w)](a)=−a ·w+w ·a ∀w∈ J(W), (4a) [δKVf](ξ)= q ∑ 1 (−1)i[ai · f(∂iξ)− f(ai ·∂iξ)+(f(∂2i,q+1ξ⊗ai)) ·aq+1]∀f ∈CqKV(A,W), ∀ξ∈A⊗q+1. (4b) TheoperatorδKV satisfies the identity δ2KVf=0 ∀f ∈CKV(A,W). Therefore thepair (C∗KV(A,W),δKV) isacochaincomplex. Its cohomologyspace isdenotedby HKV(A,W)=∑ q HqKV(A,W). TheconjectureofGerstenhaber:Comments. AKValgebraA is a two-sidedmodule of itself. An infinitesimal deformations ofA is a 1-cocycle of CKV(A,A) [9]. By the conjecture ofGerstenhaber the cohomology complexCKV(A,A) is generated by the theoryofdeformations in the categoryofKValgebras. The theoryofdeformationofKValgebras is thealgebraicversionof the theoryofdeformationof locallyflat manifolds [2]. Therefore, the complexCKV(A, ) is the solution to the conjectureofMurayGerstenhaber in the categoryof locallyflatmanifolds [27]. Features. (1)The2ndcohomologyspaceH2KV(A,A) is the spaceofnontrivialdeformationsofA. ThedefinitionofKValgebraof a locallyflatmanifoldwill begiven in thenext section. Following [2] everyhyperbolic locallyflatmanifoldhasnon trivial deformations. Thus, ifA is theKValgebraof ahyperbolic locallyflatmanifold then H2KV(A,A) =0. 150
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics