Seite - 150 - in Differential Geometrical Theory of Statistics
Bild der Seite - 150 -
Text der Seite - 150 -
Entropy2016,18, 433
Thehomogeneousvectorsub-spacesaredefinedby
CqKV(A,W)=0 ∀q<0,
C0KV(A,W)= J(W),
CqKV(A,W)=HomR(A⊗q,W) ∀q>0.
Beforepursuingwefixthe followingnotation.
Let
ξ= a1⊗ ...⊗aq+1∈A⊗q+1
andlet a∈A,
∂iξ= a1⊗ ...aˆi...⊗aq+1,
∂2i,k+1ξ=∂i(∂k+1ξ),
a.ξ= q+1
∑
1 a1⊗ ...aj−1⊗a.aj⊗aj+1...aq+1.
Wearegoingtodefinethecoboundaryoperator
δKV :Cq(A,W)→Cq+1(A,W).
Thecoboundaryoperator isa linearmap. It isdefinedby
[δKV(w)](a)=−a ·w+w ·a ∀w∈ J(W), (4a)
[δKVf](ξ)= q
∑
1 (−1)i[ai · f(∂iξ)− f(ai ·∂iξ)+(f(∂2i,q+1ξ⊗ai)) ·aq+1]∀f ∈CqKV(A,W),
∀ξ∈A⊗q+1. (4b)
TheoperatorδKV satisfies the identity
δ2KVf=0 ∀f ∈CKV(A,W).
Therefore thepair (C∗KV(A,W),δKV) isacochaincomplex. Its cohomologyspace isdenotedby
HKV(A,W)=∑
q HqKV(A,W).
TheconjectureofGerstenhaber:Comments.
AKValgebraA is a two-sidedmodule of itself. An infinitesimal deformations ofA is a 1-cocycle of
CKV(A,A) [9]. By the conjecture ofGerstenhaber the cohomology complexCKV(A,A) is generated by the
theoryofdeformations in the categoryofKValgebras.
The theoryofdeformationofKValgebras is thealgebraicversionof the theoryofdeformationof locallyflat
manifolds [2]. Therefore, the complexCKV(A, ) is the solution to the conjectureofMurayGerstenhaber in the
categoryof locallyflatmanifolds [27].
Features.
(1)The2ndcohomologyspaceH2KV(A,A) is the spaceofnontrivialdeformationsofA.
ThedefinitionofKValgebraof a locallyflatmanifoldwill begiven in thenext section.
Following [2] everyhyperbolic locallyflatmanifoldhasnon trivial deformations. Thus, ifA is theKValgebraof
ahyperbolic locallyflatmanifold then
H2KV(A,A) =0.
150
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik