Page - 151 - in Differential Geometrical Theory of Statistics
Image of the Page - 151 -
Text of the Page - 151 -
Entropy2016,18, 433
(2)LetWbea two-sidedmoduleof aKValgebraA.WeconsiderWasa trivialKValgebra,viz
w ·w∗=0 ∀w,w∗∈W.
LetEXTKV(A,W)be the set of equivalence classes of short exact sequencesofKValgebras
0→W→B→A→0.
Aninterpretationof the2ndcohomologyspaceofCKV(A,W) is the identification
H2KV(A,W)=EXTKV(A,W).
LetW,W∗be two-sidedmodulesofA. LetEXTA(W∗,W)be the set of equivalence classesof exact short
sequencesof two-sidedA-modules
0→W→T→W∗→0.
Inboth the categoryof associativealgebrasand the categoryofLie algebraswehave
HH1(A,HomR(W∗,W))=EXTA(W∗,W),
H1CE(A,HomR(W∗,W))=EXTA(W∗,W).
HereHH(A,−) stands forHochschild cohomologyof anassociativealgebraAandHCE(A,−) stands for
cohomologyofChevalley-Eilenbergof aLie algebraA.
Unfortunately in the categoryofKVmodules ofKValgebras this interpretationof thefirst cohomology
space fails. Loosely speaking in the category ofKValgebras the setH1(A,Hom(W∗,W)) is not canonically
isomorphic to setEXTA(W∗,W) [9].
3.1.2. TheTotalCochainComplexCτ.
Thepurpose is the total complex
Cτ(A,W)=∑
q Cqτ(A,W).
Itshomogeneousvectorsubspacesaredefinedby
Cqτ(A,W)=0 ∀q<0,
C0τ(A,W)=W,
Cqτ(A,W)=HomR(A⊗q,W) ∀q>0.
Thetotal coboundaryoperator isa linearmap
Cqτ(A,W)→Cq+1τ (A,W).
Thatoperator isdefinedby
(1) : [δτw](a)=−a ·w+wa ∀(a,w)∈A×W,
151
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik