Seite - 151 - in Differential Geometrical Theory of Statistics
Bild der Seite - 151 -
Text der Seite - 151 -
Entropy2016,18, 433
(2)LetWbea two-sidedmoduleof aKValgebraA.WeconsiderWasa trivialKValgebra,viz
w ·wâ=0 âw,wââW.
LetEXTKV(A,W)be the set of equivalence classes of short exact sequencesofKValgebras
0âWâBâAâ0.
Aninterpretationof the2ndcohomologyspaceofCKV(A,W) is the identiïŹcation
H2KV(A,W)=EXTKV(A,W).
LetW,Wâbe two-sidedmodulesofA. LetEXTA(Wâ,W)be the set of equivalence classesof exact short
sequencesof two-sidedA-modules
0âWâTâWââ0.
Inboth the categoryof associativealgebrasand the categoryofLie algebraswehave
HH1(A,HomR(Wâ,W))=EXTA(Wâ,W),
H1CE(A,HomR(Wâ,W))=EXTA(Wâ,W).
HereHH(A,â) stands forHochschild cohomologyof anassociativealgebraAandHCE(A,â) stands for
cohomologyofChevalley-Eilenbergof aLie algebraA.
Unfortunately in the categoryofKVmodules ofKValgebras this interpretationof theïŹrst cohomology
space fails. Loosely speaking in the category ofKValgebras the setH1(A,Hom(Wâ,W)) is not canonically
isomorphic to setEXTA(Wâ,W) [9].
3.1.2. TheTotalCochainComplexCÏ.
Thepurpose is the total complex
CÏ(A,W)=â
q CqÏ(A,W).
ItshomogeneousvectorsubspacesaredeïŹnedby
CqÏ(A,W)=0 âq<0,
C0Ï(A,W)=W,
CqÏ(A,W)=HomR(Aâq,W) âq>0.
Thetotal coboundaryoperator isa linearmap
CqÏ(A,W)âCq+1Ï (A,W).
Thatoperator isdeïŹnedby
(1) : [ÎŽÏw](a)=âa ·w+wa â(a,w)âAĂW,
151
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik